請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73820
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
dc.contributor.author | Qiao-Xin Gao | en |
dc.contributor.author | 高巧欣 | zh_TW |
dc.date.accessioned | 2021-06-17T08:11:03Z | - |
dc.date.available | 2020-07-30 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | [1] K. L. Abdullahi, J. M. Delgado-Saborit, and R. M. Harrison, 'Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review, ' Atmospheric Environment, 71, pp. 260-294, 2013.
[2] W. Zhao, P. K. Hopke, E. W. Gelfand, and N. Rabinovitch, 'Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma,' Atmospheric Environment, 41(19), pp. 4084-4096, 2007. [3] D. Massey, A. Kulshrestha, J. Masih, and A. B. E. J. Taneja, 'Seasonal trends of PM10, PM5. 0, PM2. 5 & PM1. 0 in indoor and outdoor environments of residential homes located in North-Central India,' Building and Environment, 47, pp. 223-231, 2012. [4] M. P. Wan, C. L. Wu, G. N. S. To, T. C. Chan, and C. Y. Chao, 'Ultrafine particles, and PM2. 5 generated from cooking in homes, ' Atmospheric Environment, 45(34), pp. 6141-6148, 2011. [5] G. C. Fang, C. N. Chang, Y. S. Wu, P. P. C. Fu, D. G. Yang, and C. Chia-Chium, 'Characterization of chemical species in PM2. 5 and PM10 aerosols in suburban and rural sites of central Taiwan, ' Science of the Total Environment, 234(1-3), pp. 203-212, 1999. [6] R. B. Hetland, M. Refsnes, T. Myran, B. V. Johansen, N. Uthus, and P. E. Schwarze, 'Mineral and/or metal content as critical determinants of particle-induced release of IL-6 and IL-8 from A549 cells,' Journal of Toxicology and Environmental Health Part A, 60(1), pp. 47-65, 2000. [7] C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, 'Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,' Jama, 287(9), pp. 1132-1141, 2002. [8] D. Kampa, S. Wurster, J. Buzengeiger, J. Meyer, and G. Kasper, 'Pressure drop and liquid transport through coalescence filter media used for oil mist filtration,' International Journal of Multiphase Flow, 58, pp. 313-324, 2014. [9] R. Mead-Hunter, A. J. King, and B. J. Mullins, 'Aerosol-mist coalescing filters–a review,' Separation and Purification Technology, 133, pp. 484-506, 2014. [10] G. Kellie, 'Advances in technical nonwovens,' Woodhead publishing series in textiles: number, vol 181, Woodhead Publishing, Elsevier, Oxford/Amsterdam, pp. 215-302, 2016. [11] F. J. Romay, B. Y. Liu, and S. J. Chae, 'Experimental study of electrostatic capture mechanisms in commercial electret filters,' Aerosol Science and Technology, 28(3), pp. 224-234, 1998. [12] M. Lehtimäki, and K. Heinonen, 'Reliability of electret filters,' Building and Environment, 29(3), pp. 353-355, 1994. [13] G. O. Nelson, W. Bergman, H. H. Miller, R. D. Taylor, C. P. Richards, and A. H. Biermann, 'Enhancement of air filtration using electric fields,' American Industrial Hygiene Association Journal, 39(6), pp. 472-479, 1978. [14] K. R. Parker, 'Milestones in the history of precipitation,' Applied Electrostatic Precipitation, Springer, Dordrecht, pp. 11-24, 1997. [15] F. Henry, and T. Ariman, 'Cell model of aerosol collection by fibrous filters in an electrostatic field,' Journal of Aerosol Science, 12(2), pp. 91-103, 1981. [16] H. S. Park, and Y. O. Park, 'Simulation of particle deposition on filter fiber in an external electric field,' Korean Journal of Chemical Engineering, 22(2), pp. 303-314, 2005. [17] Q. Zhang, F. Liu, T. Y. Yang, X. L. Si, G. R. Hu, and C. T. Chang, 'Deciphering effects of surface charge on particle removal by TiO2 polyacrylonitrile nanofibers,' Aerosol and Air Quality Research, 17(7), pp. 1909-1916, 2017. [18] X. Li, N. Wang, G. Fan, J. Yu, J. Gao, G. Sun, and B. Ding, 'Electreted polyetherimide–silica fibrous membranes for enhanced filtration of fine particles,' Journal of colloid and interface science, 439, pp. 12-20, 2015. [19] V. Cardoso, D. Correia, C. Ribeiro, M. Fernandes, and S. Lanceros-Méndez, 'Fluorinated polymers as smart materials for advanced biomedical applications,' Polymers, 10(2), pp. 161, 2018. [20] N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S. S. Al-Deyab, and B. Ding, 'Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration,' Separation and Purification Technology, 126, pp. 44-51, 2014. [21] S. Wang, X. Zhao, X. Yin, J. Yu, and B. Ding, 'Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration,' ACS applied materials & interfaces, 8(36), pp. 23985-23994, 2016. [22] L. W. Barrett, and A. D. Rousseau, 'Aerosol loading performance of electret filter media,' American Industrial Hygiene Association Journal, 59(8), pp. 532-539, 1998. [23] R. C. Brown, 'The behaviour of fibrous filter media in dust respirators,' The Annals of occupational hygiene, 23(4), pp. 367-380, 1980. [24] K. B. Tennal, M. K. Mazumder, A. Siag, and R. N. Reddy, 'Effect of loading with AIM oil aerosol on the collection efficiency of an electret filter,' Particulate science and technology, 9(1-2), pp. 19-29, 1991. [25] I. E. Agranovski, and R. D. Braddock, Filtration of liquid aerosols on wettable fibrous filters. AIChE journal, 44(12), pp. 2775-2783, 1998. [26] P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J. C. Appert-Collin, and D. Bémer, 'Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions,' Journal of Aerosol Science, 35(2), pp. 263-278, 2004. [27] K.R. Spurny, 'Advances in aerosol gas filtration,' CRC Press, Schmallenberg, Germany, pp. 315-403, 1998. [28] R. Thakur, D. Das, and A. Das, 'Electret air filters,' Separation & Purification Reviews, 42(2), pp. 87-129, 2013. [29] W. C. Hinds, 'Aerosol technology: properties, behavior, and measurement of airborne particles,' John Wiley & Sons, Los Angeles, United States of America, pp. 102-136, 2012. [30] W. C. Hinds, 'Aerosol technology: properties, behavior, and measurement of airborne particles,' John Wiley & Sons, first edition, Los Angeles, United States of America, 1999. [31] S. H. Huang, C. W. Chen, C. P. Chang, C. Y. Lai, and C. C. Chen, 'Penetration of 4.5 nm to 10μm aerosol particles through fibrous filters,' Journal of Aerosol Science, 38(7), pp. 719-727, 2007. [32] H. M. Xiao, G. J. Chen, and Y. P. Song. 'Penetration performance of melt-blown polypropylene electret nonwoven web against DEHS aerosols,' Advanced Materials Research. Vol. 393. Trans Tech Publications, pp. 1318-1321, 2012. [33] G. L. Fairs, 'High efficiency fibre filters for the treatment of fine mists,' Transactions of the Institution of Chemical Engineers, 36(6), pp. 476-485, 1958. [34] B. J. Carroll, 'Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process,' Langmuir, 2(2), pp. 248-250, 1986. [35] F. W. Minor, M. Schwartz, and E. Wulkow, 'a & Buckles, LC Part III: The behavior of liquids on single textile fibers,' Textile Research Journal, 29, pp. 940-949, 1959. [36] T. P. Liew, and J. R. Conder, 'Fine mist filtration by wet filters—I. Liquid saturation and flow resistance of fibrous filters,' Journal of Aerosol Science, 16(6), pp. 497-509, 1985. [37] P. C. Raynor, and D. Leith, 'The influence of accumulated liquid on fibrous filter performance,' Journal of Aerosol Science, 31(1), pp. 19-34, 2000. [38] T. Penner, J. Meyer, G. Kasper, and A. Dittler, 'Impact of operating conditions on the evolution of droplet penetration in oil mist filters,' Separation and Purification Technology, 211, pp. 697-703, 2019. [39] H. E. Kolb, A. K. Watzek, V. Z. Francesconi, J. Meyer, A. Dittler, & G. Kasper, 'A mesoscale model for the relationship between efficiency and internal liquid distribution of droplet mist filters,' Journal of Aerosol Science, 123, pp. 219-230, 2018. [40] B. J. Mullins, R. Mead‐Hunter, R. N. Pitta, G. Kasper, and W. Heikamp, 'Comparative performance of philic and phobic oil‐mist filters,' AIChE Journal, 60(8), pp. 2976-2984, 2014. [41] P. Kulkarni, P. A. Baron, and K. Willeke, 'Aerosol measurement: principles, techniques, and applications,' John Wiley & Sons, third edition, New York, United states of America, 2011. [42] H. S. Park, and Y. O. Park, 'Simulation of particle deposition on filter fiber in an external electric field,' Korean Journal of Chemical Engineering, 22(2), pp. 303-314, 2005. [43] F. Auzerais, A. C. Payatakes, and K. Okuyama, 'Dendritic deposition of uncharged aerosol particles on an uncharged fiber in the presence of an electrical field,' Chemical Engineering Science, 38(3), pp. 447-467, 1983. [44] C. L. Aardahl, R. Vehring, R. Weber, G. Schweiger, E. J. Davis, and A. Wiedensohler, 'Electrodynamic trapping of aerocolloidal particles: experimental and theoretical trapping limits,' Journal of colloid and interface science, 192(1), pp. 228-237, 1997. [45] M. J. Oak, and D. A. Saville, 'The buildup of dendrite structures on fibers in the presence of strong electrostatic fields,' Journal of Colloid and Interface Science, 76(1), pp. 259-262, 1980. [46] C. S. Wang, C. P. Ho, H. Makino, and K. Iinoya, 'Effect of electrostatic fields on accumulation of solid particles on single cylinders,' AIChE Journal, 26(4), pp. 680-683, 1980. [47] A. Thorpe, and R. C. Brown, 'Performance of electrically augmented fibrous filters, measured with monodisperse aerosols,' Aerosol Science & Technology, 37(3), pp. 231-245, 2003. [48] J. Chen, and J. H. Davidson, 'Model of the negative DC corona plasma: comparison to the positive DC corona plasma,' Plasma chemistry and plasma processing, 23(1), pp. 83-102, 2003. [49] C.K. Chang, Development of P(VDF-TrFE) electrospun nanofibers for aerosol filtration, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2018. [50] D.L. Yang, Development of a tree-shaped flow channel for the application of aerosol filtration system, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2018. [51] S.C. Lee, Combination of oleophilic/oleophobic filter materials for oil mist remover, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2018. [52] Y. H. Chou, Development of moisture-proof cyclic olefin copolymer and oil-proof thermoplastic polyurethane masking filters for the application of electrostatic Filter, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73820 | - |
dc.description.abstract | 根據《世界衛生組織》2014年的統計指出,全球室內污染人口主要分佈於亞洲及非洲區域,約有 30 億人。因欠缺通風及過濾系統的廚房,其烹調所產生的煙霧,將導致每年約 350 至 430 萬人喪命。由TEDS (Taiwan Emission Data System) 9.0可知台灣在餐廳及家庭使用排放上,各占PM2.5總排放量中的6.39% 及17.13%。因此如何有效的防止吸入油霧,已成為世界各國主要研究的目標之一。
在此研究中針對濾材過濾油霧時,過濾效能明顯下降的議題進行討論並提出解決方式。因市售聚丙烯靜電濾材在過濾中擁有靜電吸引的機制,因此其在過濾微粒粒徑為100至400 奈米間時有較高的過濾效率,然而,聚丙烯靜電濾材在過濾油霧時,其帶電性將隨之下降,進而導致過濾效率降低,因此,將市售聚丙烯靜電濾材進行表面改質,於其表面噴灑奈米顆粒,發現噴灑聚四氟乙烯奈米顆粒於聚丙烯靜電濾材上,能夠有效延緩聚丙烯靜電濾材於高油霧環境下,帶電性耗損程度的趨勢,使其過濾膜品質提升23.25 %。 此外,利用不銹鋼濾網施加電場於市售油霧濾材間進行油霧過濾,發現不鏽鋼濾網第一層接正電、第二層接地與第三層接正電時所產生之電場,能夠使整體過濾效率提高2.47 %。也針對不鏽鋼濾網間市售濾材排列順序做了研究,發現若濾材排列順序依序為親油濾材及疏油濾材時,其過濾效率將表現最好。若在親油濾材及疏油濾材前添熱塑性聚氨酯防油層,則可發現其能夠使整體系統壓損上升幅度減少27.36 %、過濾效率提升2.72 %。而在長時間過濾油霧下,施加電場則能夠使整體過濾效能變好。因此,可得知在不鏽鋼濾網第一層接正電、第二層接地與第三層接正電時所產生之電場下,濾材排列順序為熱塑性聚氨酯防油層、親油濾材及疏油濾材時,過濾油霧之效能最好。 | zh_TW |
dc.description.abstract | According to the global report of the World Health Organization in 2014, the global population affected by indoor pollution is mainly in Asia and Africa, and it influences about 3 billion people. Due to the lack of ventilation and filtration systems, oil mist generated by cooking kills about 3.5 to 4.3 million people every year. According to TEDS(Taiwan Emission Data System) 9.0, Taiwan's emissions from restaurants and households account for 6.39% and 17.13% of the total PM2.5 (PM: Particulate matter) emissions. Therefore, how to effectively prevent the inhalation of oil mist become one of the main tasks in the world.
In this study, methods to enhance commercial oil-mist filters are proposed and studied. Since the commercial polypropylene (PP) electrostatic filter provides filtration mechanism of electrostatic attraction, it has a higher filtration efficiency for the particle size between 100 to 400 nm. However, captured oil mist can mask PP fibers, and the chargeability and its filtration efficiency can be depleted very quickly. Therefore, a method to modify the surface of PP fibers is developed in this thesis. Nanoparticles are sprayed on the surface of PP fibers to change its surface energy. It was found that spraying PTFE (polytetrafluoroethene) nanoparticles on PP fibers can improve the filtration efficiency and achieve 23.25 % higher performance. Secondly, electric field was introduced to commercial filter by using stainless steel meshes to sandwich these filters. Commercial filters are placed between two stainless steel meshes. It was found that letting the front stainless steel mesh to be positively charged and grounded the other one on the back, the quality factor is 6.46 times higher than no charged stainless steel meshes. It also was found that placing commercial filters sequentially as oleophilic filter at front followed by putting a oleophobic filter behind it can have a better filtration efficiency by 2.47 %. Finally, by placing a high porous TPU (thermoplastic polyurethane) filter in front of all commercial filters, the overall pressure drop can be significantly decreased by 27.36 % and the filtration efficiency can increased by 2.72 %. This design can prolong the usage of commercial filters for oil mist filtrations and also decrease the system pressure drop. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:03Z (GMT). No. of bitstreams: 1 ntu-108-R06543010-1.pdf: 7951014 bytes, checksum: f0a411ec9e43b9ca5e7772321d5e3d98 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 奈米顆粒對於濾材的影響 3 1.2.2 油霧對於濾材的影響 5 1.3 論文架構 7 第2章 濾材過濾與沉積 8 2.1 過濾原理 8 2.1.1 單纖維理論(Single fiber efficiency, E) 8 2.1.2 過濾機制(Deposition Mechanisms) 9 2.2 濾材品質(Filter Quality) 14 2.2.1 過濾效率(Filtration efficiency) 14 2.2.2 壓降(Pressure drop,'∆P' ) 14 2.2.3 過濾膜品質(Quality factor, 'qf' ) 14 2.2.4 使用壽命(Service life) 15 2.2.5 表面風速(Face velocity) 15 2.2.6 微粒種類 15 2.3 濾材沉積 16 2.3.1 濾材沉積形態 16 2.3.2 濾材沉積機制 17 2.3.3 濾材沉積行為 18 2.3.4 親疏油濾材排列 20 2.3.5 濾材沉積分布狀態 23 第3章 高壓不鏽鋼靜電濾網過濾原理 25 3.1 電場對於氣膠之影響 25 3.1.1 氣膠帶電 25 3.1.2 電場和靜電力 26 3.1.3 微粒運動方程式 30 3.1.4 電場對於氣膠沉積之影響 31 3.2 電場對於過濾效率之影響 33 第4章 研究方法與系統架設 36 4.1 過濾材料 36 4.1.1 奈米顆粒 36 4.1.2 聚丙烯靜電濾材 36 4.1.3 不鏽鋼濾網 37 4.1.4 熱塑性聚氨酯濾材 37 4.1.5 市售油霧濾材 37 4.2 靜電濾材表面改質 38 4.2.1 奈米顆粒噴灑 38 4.2.2 電暈放電 39 4.3 表面電位觀測 40 4.4 電場系統設計 41 4.4.1 電場系統設計 41 4.5 濾材量測系統架設 47 4.5.1 APS量測系統 47 4.5.2 SMPS量測系統 48 4.6 濾材油霧負載量測 53 第5章 實驗結果與討論 55 5.1 商用靜電濾材表面改質 55 5.1.1 奈米顆粒吸附狀態 55 5.1.2 商用靜電濾材表面改質過濾效率量測與分析 58 5.2 市售油霧濾材與不銹鋼濾網施加電場系統 64 5.2.1 施加不同電場排列順序對親疏油濾材過濾效率量測與分析 65 5.2.2 不同親疏油濾材排列順序過濾效率量測與分析 67 5.2.3 在親疏油濾材前添加TPU層過濾效率量測與分析 70 5.2.4 親疏油濾材前添加TPU層長時間過濾效能之研究 73 5.2.5 氣膠帶電對市售油霧濾材與不銹鋼濾網施加電場系統的影響 76 第6章 結論與未來展望 80 6.1 結論 80 6.2 未來展望 80 參考文獻 82 | |
dc.language.iso | zh-TW | |
dc.title | 整合高壓不鏽鋼靜電濾網於市售油霧濾材以提升效能之研究 | zh_TW |
dc.title | Study on the high-voltage stainless steel mesh filter for the improvement of commercial oil mist filters | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳光鐘(Kuang-Chong Wu),許聿翔(Yu-Hsiang Hsu) | |
dc.contributor.oralexamcommittee | 黃盛修(Sheng-Hsiu Huang),蕭大智(Ta-Chih Hsiao) | |
dc.subject.keyword | 油霧,靜電濾材,PTFE奈米顆粒,不銹鋼濾網,電場,熱塑性聚氨酯,過濾效率, | zh_TW |
dc.subject.keyword | oil mist,electrostatic filter,PTFE nanoparticles,stainless steel filter,electric field,thermoplastic polyurethane,the filtration efficiency, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU201903811 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 7.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。