請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯佩芳 | |
| dc.contributor.author | Meng-Tien Wu | en |
| dc.contributor.author | 吳孟恬 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:42:32Z | - |
| dc.date.available | 2024-03-05 | |
| dc.date.available | 2021-05-19T17:42:32Z | - |
| dc.date.copyright | 2019-03-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-12 | |
| dc.identifier.citation | Aarts, E., Nusselein, A. A., Smittenaar, P., Helmich, R. C., Bloem, B. R., & Cools, R. (2014). Greater striatal responses to medication in Parkinsons disease are associated with better task-switching but worse reward performance. Neuropsychologia, 62, 390-397. doi:10.1016/j.neuropsychologia.2014.05.023
Adolfsdottir, S., Haasz, J., Wehling, E., Ystad, M., Lundervold, A., & Lundervold, A. J. (2014). Salient measures of inhibition and switching are associated with frontal lobe gray matter volume in healthy middle-aged and older adults. Neuropsychology, 28(6), 859-869. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9, 357-381. doi:10.1146/annurev.ne.09.030186.002041 Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2016). Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan. Neuroimage, 139, 103-113. doi:10.1016/j.neuroimage.2016.06.022 Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to Stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci, 26(9), 2424-2433. doi:10.1523/jneurosci.4682-05.2006 Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113. doi:10.1016/j.neuroimage.2007.07.007 Ashburner, J., & Friston, K. J. (2011). Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage, 55(3), 954-967. doi:10.1016/j.neuroimage.2010.12.049 Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 7186-7191. doi:10.1073/pnas.0509550103 Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z., Barad, V., Gullett, D., Shah, C., Brown, C. (2000). Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Res Cogn Brain Res, 10(1-2), 1-9. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol, 51(6), 1173-1182. Beaulieu, C. (2014). The biological basis of diffusion anisotropy. In H. Johansen-Berg & T. E. J. Behrens (Eds.), Diffusion MRI (2nd Edition ed., pp. 155-178): Academic Press. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, J. H., Jr., & Howard, D. V. (2011). White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol Aging, 32(12), 2317 e2311-2312. Bennett, I. J., Motes, M. A., Rao, N. K., & Rypma, B. (2012). White matter tract integrity predicts visual search performance in young and older adults. Neurobiol Aging, 33(2), 433.e421-431. doi:10.1016/j.neurobiolaging.2011.02.001 Blackwood, J., Shubert, T., Forgarty, K., & Chase, C. (2016). Relationships between performance on assessments of executive function and fall risk screening measures in community-dwelling older adults. J Geriatr Phys Ther, 39(2), 89-96. doi:10.1519/jpt.0000000000000056 Bohannon, R. W., Larkin, P. A., Cook, A. C., Gear, J., & Singer, J. (1984). Decrease in timed balance test scores with aging. Phys Ther, 64(7), 1067-1070. Bongard, V., McDermott, A. Y., Dallal, G. E., & Schaefer, E. J. (2007). Effects of age and gender on physical performance. Age (Dordr), 29(2-3), 77-85. doi:10.1007/s11357-007-9034-z Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci, 25, 151-188. doi:10.1146/annurev.neuro.25.112701.142946 Braddick, O., Atkinson, J., Akshoomoff, N., Newman, E., Curley, L. B., Gonzalez, M. R., Brown, T., Dale, A., & Jernigan, T. (2017). Individual differences in children's global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus. Vision Res, 141, 145-156. doi:10.1016/j.visres.2016.09.013 Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. Neuroimage, 14(6), 1416-1423. doi: 10.1006/nimg.2001.0944 Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient & sustained cognitive control during task switching. Neuron, 39(4), 713-726. doi:10.1016/s0896-6273(03)00466-5 Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. Neuroimage, 16, 1140-1141. doi:10.1016/S1053-8119(02)90013-3 Brooks, D., Solway, S., & Gibbons, W. J. (2003). ATS statement on six-minute walk test. Am J Respir Crit Care Med, 167(9), 1287. doi:10.1164/ajrccm.167.9.950 Buchsbaum, B. R., Greer, S., Chang, W. L., & Berman, K. F. (2005). Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp, 25(1), 35-45. doi: 10.1002/hbm.20128 Bunce, D., Anstey, K. J., Cherbuin, N., Burns, R., Christensen, H., Wen, W., & Sachdev, P. S. (2010). Cognitive deficits are associated with frontal and temporal lobe white matter lesions in middle-aged adults living in the community. PLoS One, 5(10), e13567. doi:10.1371/journal.pone.0013567 Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging, 17(1), 85-100. Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging: Deterioration and compensation. In D. T. Stuss and R. T. Knight (Eds.), Principles of Frontal Lobe Function (2nd ed., pp. 628-652). New York: Oxford University Press. Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., & Zelaya, F. O. (1991). Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature, 351, 467. doi:10.1038/351467a0 Cansino, S., Trejo-Morales, P., Estrada-Manilla, C., Pasaye-Alcaraz, E. H., Aguilar-Castaneda, E., Salgado-Lujambio, P., & Sosa-Ortiz, A. L. (2015). Brain activity during source memory retrieval in young, middle-aged and old adults. Brain Res, 1618, 168-180. doi:10.1016/j.brainres.2015.05.032 Cepeda, N. J., Kramer, A. F., & Gonzalez de Sather, J. C. (2001). Changes in executive control across the life span: examination of task-switching performance. Dev Psychol, 37(5), 715-730. Chamberlain, S. R., Robbins, T. W., Winder-Rhodes, S., Muller, U., Sahakian, B. J., Blackwell, A. D., & Barnett, J. H. (2011). Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry, 69(12), 1192-1203. doi:10.1016/j.biopsych.2010.08.019 Chan, A. W., Yu, D. S., & Choi, K. C. (2017). Effects of Tai Chi Qigong on psychosocial well-being among hidden elderly, using elderly neighborhood volunteer approach: A pilot randomized controlled trial. Clin Interv Aging, 12, 85-96. doi:10.2147/cia.s124604 Chang, Y. K., Nien, Y. H., Chen, A. G., & Yan, J. (2014). Tai Ji Quan, the brain, and cognition in older adults. Journal of Sport and Health Science, 3(1), 36-42. doi:10.1016/j.jshs.2013.09.003 Chechlacz, M., Gillebert, C. R., Vangkilde, S. A., Petersen, A., & Humphreys, G. W. (2015). Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention. J Neurosci, 35(30), 10647-10658. doi:10.1523/jneurosci.0210-15.2015 Chen, Y. J., Lo, Y. C., Hsu, Y. C., Fan, C. C., Hwang, T. J., Liu, C. M., Chien, Y. L., Hsieh, M. H., Liu, C. C., Hwu, H. G., & Tseng, W. Y. (2015). Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp, 36(9), 3441-3458. doi:10.1002/hbm.22854 Chiang, H. L., Chen, Y. J., Shang, C. Y., Tseng, W. Y., & Gau, S. S. (2016). Different neural substrates for executive functions in youths with ADHD: A diffusion spectrum imaging tractography study. Psychol Med, 46(6), 1225-1238. doi:10.1017/s0033291715002767 Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., Webb, A., Jerome, G. J., Marquez, D. X., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A, 101(9), 3316-3321. doi:10.1073/pnas.0400266101 Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol Sci, 14(2), 125-130. doi:10.1111/1467-9280.t01-1-01430 Concha, L., Gross, D. W., Wheatley, B. M., & Beaulieu, C. (2006). Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage, 32(3), 1090-1099. doi:10.1016/j.neuroimage.2006.04.187 Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Mechanisms of cognitive set flexibility in Parkinson's disease. Brain, 124(Pt 12), 2503-2512. Cools, R., Clark, L., & Robbins, T. W. (2004). Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J Neurosci, 24(5), 1129-1135. doi:10.1523/jneurosci.4312-03.2004 Coxon, J. P., Goble, D. J., Van Impe, A., De Vos, J., Wenderoth, N., & Swinnen, S. P. (2010). Reduced basal ganglia function when elderly switch between coordinated movement patterns. Cereb Cortex, 20(10), 2368-2379. doi:10.1093/cercor/bhp306 Crone, E. A., Wendelken, C., Donohue, S. E., & Bunge, S. A. (2006). Neural evidence for dissociable components of task-switching. Cereb Cortex, 16(4), 475-486. doi:10.1093/cercor/bhi127 Cutini, S., Scatturin, P., Menon, E., Bisiacchi, P. S., Gamberini, L., Zorzi, M., & Dell'Acqua, R. (2008). Selective activation of the superior frontal gyrus in task-switching: An event-related fNIRS study. Neuroimage, 42(2), 945-955. doi:10.1016/j.neuroimage.2008.05.013 de Lange, A. G., Brathen, A. C., Grydeland, H., Sexton, C., Johansen-Berg, H., Andersson, J. L., Rohani, D. A., Nyberg, L., Fjell, A. M., & Walhovd, K. B. (2016). White matter integrity as a marker for cognitive plasticity in aging. Neurobiol Aging, 47, 74-82. doi:10.1016/j.neurobiolaging.2016.07.007 de Zubicaray, G. I., Rose, S. E., & McMahon, K. L. (2011). The structure and connectivity of semantic memory in the healthy older adult brain. Neuroimage, 54(2), 1488-1494. doi:10.1016/j.neuroimage.2010.08.058 D'Elia, L. F., Satz, P., Uchiyama, C. L., & White, T. (1996). Color Trails Test. USA: Psychological Assessment Resources. Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiol Aging, 32(12), 2318.e2317-2330. doi:10.1016/j.neurobiolaging.2010.04.004 Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp, 25(1), 22-34. doi:10.1002/hbm.20127 Diamond, A. (2013). Executive functions. Annu Rev Psychol, 64, 135-168. doi:10.1146/annurev-psych-113011-143750 DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., Wszalek, T. M., Cohen, N. J., Banich, M. T., Webb, A., Belopolsky, A. V., & McAuley, E. (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport, 12(9), 2065-2071. Dite, W., & Temple, V. A. (2002). A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil, 83(11), 1566-1571. Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & Yves von Cramon, D. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103-109. doi:10.1016/s0926-6410(99)00029-4 du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., et al. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain, 129(Pt 12), 3315-3328. doi: 10.1093/brain/awl244 Eggenberger, P., Wolf, M., Schumann, M., & de Bruin, E. D. (2016). Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults. Front Aging Neurosci, 8, 66. doi:10.3389/fnagi.2016.00066 Elias, L. J., Bryden, M. P., & Bulman-Fleming, M. B. (1998). Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia, 36(1), 37-43. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, O., Larsen, V. A., & Walhovd, K. B. (2012). Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Hum Brain Mapp, 33(10), 2390-2406. doi:10.1002/hbm.21370 Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods, 41(4), 1149-1160. doi:10.3758/brm.41.4.1149 Ferreira, D., Machado, A., Molina, Y., Nieto, A., Correia, R., Westman, E., & Barroso, J. (2017). Cognitive variability during middle-age: Possible association with neurodegeneration and cognitive reserve. Front Aging Neurosci, 9, 188. doi:10.3389/fnagi.2017.00188 Fong, D. Y., Chi, L. K., Li, F., & Chang, Y. K. (2014). The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: An ERP study. Front Aging Neurosci, 6, 295. doi:10.3389/fnagi.2014.00295 Fray, P. J., Robbins, T. W., & Sahakian, B. J. (1996). Neuorpsychiatyric applications of CANTAB. Int J Geriatr Psychiatry, 11(4), 329-336. doi:10.1002/(sici)1099-1166(199604)11:4<329::aid-gps453>3.0.co;2-6 Fritzsche, K. H., Laun, F. B., Meinzer, H. P., & Stieltjes, B. (2010). Opportunities and pitfalls in the quantification of fiber integrity: What can we gain from Q-ball imaging? Neuroimage, 51(1), 242-251. doi:10.1016/j.neuroimage.2010.02.007 Fu, C., Li, Z., & Mao, Z. (2018). Association between social activities and cognitive function among the elderly in China: A cross-sectional study. Int J Environ Res Public Health, 15(2). doi:10.3390/ijerph15020231 Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc Natl Acad Sci U S A, 96(14), 8301-8306. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., & Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-1359. doi:10.1249/MSS.0b013e318213fefb Gau, S. S., & Shang, C. Y. (2010). Executive functions as endophenotypes in ADHD: Evidence from the Cambridge Neuropsychological Test Battery (CANTAB). J Child Psychol Psychiatry, 51(7), 838-849. doi:10.1111/j.1469-7610.2010.02215.x Gazes, Y., Rakitin, B. C., Habeck, C., Steffener, J., & Stern, Y. (2012). Age differences of multivariate network expressions during task-switching and their associations with behavior. Neuropsychologia, 50(14), 3509-3518. doi:10.1016/j.neuropsychologia.2012.09.039 Glei, D. A., Landau, D. A., Goldman, N., Chuang, Y. L., Rodriguez, G., & Weinstein, M. (2005). Participating in social activities helps preserve cognitive function: An analysis of a longitudinal, population-based study of the elderly. Int J Epidemiol, 34(4), 864-871. doi:10.1093/ije/dyi049 Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A., & Smith, C. D. (2010). Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol Aging, 31(3), 512-522. doi:10.1016/j.neurobiolaging.2008.04.005 Gorczewski, K., Mang, S., & Klose, U. (2009). Reproducibility and consistency of evaluation techniques for HARDI data. Magma, 22(1), 63-70. doi:10.1007/s10334-008-0144-0 Gothe, N. P., Fanning, J., Awick, E., Chung, D., Wojcicki, T. R., Olson, E. A., Mullen, S. P., Voss, M., Erickson, K. I., Kramer, A. F., & McAuley, E. (2014). Executive function processes predict mobility outcomes in older adults. J Am Geriatr Soc, 62(2), 285-290. doi:10.1111/jgs.12654 Gunstad, J., Paul, R. H., Brickman, A. M., Cohen, R. A., Arns, M., Roe, D., Lawrence, J. J., & Gordon, E. (2006). Patterns of cognitive performance in middle-aged and older adults: A cluster analytic examination. J Geriatr Psychiatry Neurol, 19(2), 59-64. doi:10.1177/0891988705284738 Hakun, J. G., & Johnson, N. F. (2017). Dynamic range of frontoparietal functional modulation is associated with working memory capacity limitations in older adults. Brain Cogn, 118, 128-136. doi:10.1016/j.bandc.2017.08.007 Hakun, J. G., Zhu, Z., Johnson, N. F., & Gold, B. T. (2015). Evidence for reduced efficiency and successful compensation in older adults during task switching. Cortex, 64, 352-362. doi:10.1016/j.cortex.2014.12.006 Hawkes, T. D., Siu, K. C., Silsupadol, P., & Woollacott, M. H. (2012). Why does older adults' balance become less stable when walking and performing a secondary task? Examination of attentional switching abilities. Gait Posture, 35(1), 159-163. doi:10.1016/j.gaitpost.2011.09.001 Henry, L. A., & Bettenay, C. (2010). The Assessment of Executive Functioning in Children. Child and Adolescent Mental Health, 15(2), 110-119. doi:10.1111/j.1475-3588.2010.00557.x Hikichi, H., Kondo, K., Takeda, T., & Kawachi, I. (2017). Social interaction and cognitive decline: Results of a 7-year community intervention. Alzheimers Dement (N Y), 3(1), 23-32. doi:10.1016/j.trci.2016.11.003 Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32(3), 989-994. doi:10.1016/j.neuroimage.2006.05.044 Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. J Neurosci, 33(31), 12844-12850. doi:10.1523/JNEUROSCI.4520-12.2013 Hsu, Y. C., Hsu, C. H., & Tseng, W. Y. (2012). A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage, 63(2), 818-834. doi:10.1016/j.neuroimage.2012.07.033 Hsu, Y. C., Lo, Y. C., Chen, Y. J., Wedeen, V. J., & Tseng, W. Y. (2015). NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36(9), 3528-3541. doi:10.1002/hbm.22860 Huang, C. M., Polk, T. A., Goh, J. O., & Park, D. C. (2012). Both left and right posterior parietal activations contribute to compensatory processes in normal aging. Neuropsychologia, 50(1), 55-66. doi:10.1016/j.neuropsychologia.2011.10.022 Huff, M. J., Balota, D. A., Minear, M., Aschenbrenner, A. J., & Duchek, J. M. (2015). Dissociative global and local task-switching costs across younger adults, middle-aged adults, older adults, and very mild Alzheimer's disease individuals. Psychol Aging, 30(4), 727-739. doi:10.1037/pag0000057 Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. Br J Psychiatry, 140, 566-572. Jellison, B. J., Field, A. S., Medow, J., Lazar, M., Salamat, M. S., & Alexander, A. L. (2004). Diffusion tensor imaging of cerebral white matter: A pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. American Journal of Neuroradiology, 25(3), 356. Jimura, K., & Braver, T. S. (2010). Age-related shifts in brain activity dynamics during task switching. Cereb Cortex, 20(6), 1420-1431. doi:10.1093/cercor/bhp206 Jimura, K., Cazalis, F., Stover, E. R., & Poldrack, R. A. (2014). The neural basis of task switching changes with skill acquisition. Front Hum Neurosci, 8, 339. doi:10.3389/fnhum.2014.00339 Johansen-Berg, H., & Rushworth, M. F. (2009). Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci, 32, 75-94. doi:10.1146/annurev.neuro.051508.135735 Jolly, T. A., Cooper, P. S., Rennie, J. L., Levi, C. R., Lenroot, R., Parsons, M. W., Michie, P. T., & Karayanidis, F. (2017). Age-related decline in task switching is linked to both global and tract-specific changes in white matter microstructure. Hum Brain Mapp, 38(3), 1588-1603. doi:10.1002/hbm.23473 Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Hebrank, A. C., Reuter-Lorenz, P. A., & Park, D. C. (2015). Age trajectories of functional activation under conditions of low and high processing demands: an adult lifespan fMRI study of the aging brain. Neuroimage, 104, 21-34. doi:10.1016/j.neuroimage.2014.09.056 Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. J Neurosci, 31(13), 4771-4779. doi:10.1523/JNEUROSCI.5923-10.2011 Kim, Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp, 33(1), 130-142. doi:10.1002/hbm.21199 Kim, H. S., An, Y. M., Kwon, J. S., & Shin, M. S. (2014). A preliminary validity study of the cambridge neuropsychological test automated battery for the assessment of executive function in schizophrenia and bipolar disorder. Psychiatry Investig, 11(4), 394-401. doi:10.4306/pi.2014.11.4.394 Kimberg, D. Y., Aguirre, G. K., & D'Esposito, M. (2000). Modulation of task-related neural activity in task-switching: an fMRI study. Brain Res Cogn Brain Res, 10(1-2), 189-196. Klanker, M., Feenstra, M., & Denys, D. (2013). Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci, 7, 201. doi:10.3389/fnins.2013.00201 Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychol Aging, 15(1), 126-147. Kuo, L. W., Chen, J. H., Wedeen, V. J., & Tseng, W. Y. (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage, 41(1), 7-18. doi:10.1016/j.neuroimage.2008.02.016 Kwon, Y. H., Nam, K. S., & Park, J. W. (2012). Identification of cortical activation and white matter architecture according to short-term motor learning in the human brain: Functional MRI and diffusion tensor tractography study. Neurosci Lett, 520(1), 11-15. doi:10.1016/j.neulet.2012.05.005 Lan, C., Chen, S. Y., & Lai, J. S. (2008). The exercise intensity of Tai Chi Chuan. Med Sport Sci, 52, 12-19. doi:10.1159/000134225 Lan, C., Chen, S. Y., Lai, J. S., & Wong, A. M. (2013). Tai chi chuan in medicine and health promotion. Evid Based Complement Alternat Med, 2013, 502131. doi:10.1155/2013/502131 Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9(3), 179-186. Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci, 4(6), 469-480. doi:10.1038/nrn1119 Leunissen, I., Coxon, J. P., Caeyenberghs, K., Michiels, K., Sunaert, S., & Swinnen, S. P. (2014). Task switching in traumatic brain injury relates to cortico-subcortical integrity. Hum Brain Mapp, 35(5), 2459-2469. doi:10.1002/hbm.22341 Li, J. X., Hong, Y., & Chan, K. M. (2001). Tai chi: Physiological characteristics and beneficial effects on health. Br J Sports Med, 35(3), 148-156. Li, R., Zhu, X., Yin, S., Niu, Y., Zheng, Z., Huang, X., Wang, B., & Li, J. (2014). Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Front Aging Neurosci, 6, 39. doi:10.3389/fnagi.2014.00039 Liang, S. Y., & Wu, W. C. (1996). Tai Chi Chuan: 24 And 48 Postures With Martial Applications. Boston: Yang's Martial Arts Association Publication Center Press. Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Arch Intern Med, 170(2), 170-178. doi:10.1001/archinternmed.2009.494 Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M., & Handy, T. C. (2012). Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiol Aging, 33(8), 1690-1698. doi:10.1016/j.neurobiolaging.2011.05.010 Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia, 36(3), 273-293. Ma, C., Zhou, W., Tang, Q., & Huang, S. (2018). The impact of group-based Tai chi on health-status outcomes among community-dwelling older adults with hypertension. Heart Lung. doi:10.1016/j.hrtlng.2018.04.007 MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838. Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., Davis, S. W., Dennis, N. A., Provenzale, J. M., & Huettel, S. A. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci, 21(2), 289-302. doi:10.1162/jocn.2009.21047 Matthews, M. M., & Williams, H. G. (2008). Can Tai chi enhance cognitive vitality? A preliminary study of cognitive executive control in older adults after A Tai chi intervention. J S C Med Assoc., 104(8), 255-257. Mayer, K. M., & Vuong, Q. C. (2014). TBSS and probabilistic tractography reveal white matter connections for attention to object features. Brain Struct Funct, 219(6), 2159-2171. doi:10.1007/s00429-013-0631-6 Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci, 21(19), 7733-7741. Monsell, S. (2003). Task switching. Trends Cogn Sci, 7(3), 134-140. Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Mem Cognit, 31(3), 327-342. Moreau, D., Morrison, A. B., & Conway, A. R. (2015). An ecological approach to cognitive enhancement: Complex motor training. Acta Psychol (Amst), 157, 44-55. doi:10.1016/j.actpsy.2015.02.007 Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A. V., Mahmood, A., Woods, R., Toga, A. W., Pike, G. B., Neto, P. R., Evans, A., Zhang, J., Huang, H., Miller, M. I., van Zijl, P., & Mazziotta, J. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage, 40(2), 570-582. doi:10.1016/j.neuroimage.2007.12.035 Mortimer, J. A., Ding, D., Borenstein, A. R., DeCarli, C., Guo, Q., Wu, Y., Zhao, Q., & Chu, S. (2012). Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. J Alzheimers Dis, 30(4), 757-766. Nagamatsu, L. S., Handy, T. C., Hsu, C. L., Voss, M., & Liu-Ambrose, T. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment: A 6-month randomized controlled trial. Archives of internal medicine, 172(8), 666-668. doi:10.1001/archinternmed.2012.379 Nashiro, K., Qin, S., O'Connell, M. A., & Basak, C. (2018). Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs. Neuroimage, 172, 146-161. doi:10.1016/j.neuroimage.2018.01.030 Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 53(4), 695-699. doi:10.1111/j.1532-5415.2005.53221.x Neubert, F. X., Mars, R. B., Buch, E. R., Olivier, E., & Rushworth, M. F. (2010). Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci U S A, 107(30), 13240-13245. doi:10.1073/pnas.1000674107 Nguyen, M. H., & Kruse, A. (2012). A randomized controlled trial of Tai chi for balance, sleep quality and cognitive performance in elderly Vietnamese. Clin Interv Aging, 7, 185-190. Nishiguchi, S., Yamada, M., Tanigawa, T., Sekiyama, K., Kawagoe, T., Suzuki, M., Yoshikawa, S., Abe, N., Otsuka, Y., Nakai, R., Aoyama, T., & Tsuboyama, T. (2015). A 12-week physical and cognitive exercise program can improve cognitive function and neural efficiency in community-dwelling older adults: A randomized controlled trial. J Am Geriatr Soc, 63(7), 1355-1363. doi:10.1111/jgs.13481 Nyunt, M. S., Fones, C., Niti, M., & Ng, T. P. (2009). Criterion-based validity and reliability of the Geriatric Depression Screening Scale (GDS-15) in a large validation sample of community-living Asian older adults. Aging Ment Health, 13(3), 376-382. doi:10.1080/13607860902861027 Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. Perry, A., Wen, W., Kochan, N. A., Thalamuthu, A., Sachdev, P. S., & Breakspear, M. (2017). The independent influences of age and education on functional brain networks and cognition in healthy older adults. Hum Brain Mapp, 38(10), 5094-5114. doi:10.1002/hbm.23717 Philipp, A. M., Weidner, R., Koch, I., & Fink, G. R. (2013). Differential roles of inferior frontal and inferior parietal cortex in task switching: Evidence from stimulus-categorization switching and response-modality switching. Hum Brain Mapp, 34(8), 1910-1920. doi:10.1002/hbm.22036 Ratcliff, R., & Frank, M. J. (2012). Reinforcement-based decision making in corticostriatal circuits: Mutual constraints by neurocomputational and diffusion models. Neural Comput, 24(5), 1186-1229. doi:10.1162/NECO_a_00270 Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med, 49(1), 177-182. doi:10.1002/mrm.10308 Reimers, S., & Maylor, E. A. (2005). Task switching across the life span: Effects of age on general and specific switch costs. Dev Psychol, 41(4), 661-671. doi:10.1037/0012-1649.41.4.661 Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271-276. Rizio, A. A., & Diaz, M. T. (2016). Language, aging, and cognition: frontal aslant tract and superior longitudinal fasciculus contribute toward working memory performance in older adults. Neuroreport, 27(9), 689-693. doi:10.1097/wnr.0000000000000597 Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., & Rabbitt, P. M. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc, 4(5), 474-490. doi: 10.1017/s1355617798455073 Rodriguez-Herreros, B., Amengual, J. L., Gurtubay-Antolin, A., Richter, L., Jauer, P., Erdmann, C., Schweikard, A., Lopez-Moliner, J., Rodriguez-Fornells, A., & Munte, T. F. (2015). Microstructure of the superior longitudinal fasciculus predicts stimulation-induced interference with on-line motor control. Neuroimage, 120, 254-265. doi:10.1016/j.neuroimage.2015.06.070 Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., & D'Esposito, M. (2005). Dissociating age-related changes in cognitive strategy and neural efficiency using event-related fMRI. Cortex, 41(4), 582-594. Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7380 | - |
| dc.description.abstract | 背景:轉換任務能力是指能彈性地轉移注意力,以因應兩種或多重任務需求的能力。轉換任務能力是一種高階執行功能,會隨著年齡增加而下降。中年期是轉換任務能力下降的轉銜期,但具有個別化差異。過去罕有研究探討中年人如何調節大腦功能性活化,以預防或因應此轉換任務能力之下降。太極拳運動訓練已被證實能有效改善老年人之轉換任務表現。然而,太極拳運動訓練如何影響轉換任務相關神經機制仍是未知。本論文之目的有三:(1) 研究一為探討年輕人、中年人、及老年人之轉換任務能力及其相關腦部功能性活化之差異,尤其著重探討中年人之神經機制;(2) 研究二為探討太極拳運動訓練是否能有效改善老年人執行轉換任務時之腦部功能性活化;(3) 研究三為探討太極拳運動訓練是否能增加轉換任務相關之特定白質神經纖維束完整性,或特定白質神經纖維完整性之基準值是否會影響中老年人在太極拳運動訓練後增進轉換任務表現之效益。
方法:研究一採用修改版的史楚普(Stroop)功能性磁振造影測試,以評估年輕人(n = 30)、中年人(n = 30)、及老年人(n = 30)在執行非轉換任務及轉換任務測試時之腦部功能性活化及行為表現,並探討其腦部活化與行為表現間之關係。研究二使用相同的功能性磁振造影測試及隨機對照試驗設計,隨機分派老年人至太極拳組(n = 16)及控制組(n = 15),並評估老年人在12週太極拳運動介入前、後之腦部功能性活化及轉換任務表現之變化。研究三使用擴散頻譜磁振造影及隨機對照試驗設計,隨機分派中老年人至太極拳組(n = 19)及控制組(n = 19),探討中老年人在12週太極拳運動介入前、後,全腦白質神經纖維束及與轉換任務相關之特定白質神經纖維束的完整性之變化,也探討這些白質神經纖維束完整性之基準值與太極拳促進轉換任務效益之關係。白質神經纖維束完整性以普擴散不等向性分數(generalized fractional anisotropy)表示。在研究二及研究三中,太極拳組受試者接受為期12週、每週三次、每次60分鐘的楊式24式太極拳運動訓練介入,而控制組受試者則未接受任何訓練介入,僅維持其原生活形態,與接受每兩週一次的電話訪問。研究二及研究三除了蒐集影像資料之外,亦會蒐集轉換任務及身體功能之行為表現資料。 結果:研究一發現雖然三個年齡組之受試者皆有能力依據任務難度需求,調節兩側前額葉-頂葉腦區之功能性活化,但唯有中年人組呈現:在執行轉換任務測試時,左側前額葉活化愈高者,及從非轉換任務至轉換任務測試時,左側前額葉活化增加愈多者,其轉換任務錯誤愈少或反應時間愈短之現象(r = -0.374 – -0.569, p ≤ 0.05)。研究二及研究三皆發現太極拳運動訓練有促進轉換任務表現及身體功能之效益。研究二更發現,老年人在接受在12週太極拳運動訓練後,在執行轉換任務時,愈有能力提升前額葉活化者,尤其是左側上額迴(left superior frontal gyrus)之活化,其轉換任務錯誤減少得愈多(r = -0.631, p = 0.021)。研究三之結果發現,全腦白質神經纖維束(r = -0.747, p = 0.001)、與前額葉-紋狀體-視丘-前額葉迴路(prefronto-striatal-thalamo-prefrontal loop) (r = -0.800, p < 0.001)、及前額葉-頂葉/顳葉(prefronto-parietal/occipital) (r = -0.782, p < 0.001)之白質神經纖維束之基準值愈高者,12週太極拳運動訓練後之轉換任務錯誤減少得愈多。其中,前額葉-紋狀體-視丘-前額葉迴路白質神經纖維束完整性之基準值為預測12週太極拳訓練後之轉換任務進步量之最主要因子(β = -0.875, R2 = 0.495, p < 0.001)。 結論:整體而言,研究一之結果表示調節與轉換任務相關的左側前額葉活化的能力是中年人達成愈佳轉換任務表現之獨特神經機制。因此,建議提供有助於增加此調節能力之訓練,以預防隨年齡增加而來的轉換任務表現下降。研究二之結果建議,太極拳運動訓練是一種有助於提升轉換任務表現的運動型態,因太極拳運動訓練能提升一些老年人在因應轉換任務測試時,腦部前額葉活化之功能,雖然並非所有老年人皆能呈現此效益。研究三之結果突顯中老年人之前額葉-紋狀體-視丘-前額葉神經纖維束完整性基準值之重要性,較好的神經纖維束完整性有益於中老年人在12週太極拳運動訓練後,獲得較佳的轉換任務進步。 | zh_TW |
| dc.description.abstract | Background: The ability to flexibly shift attention and respond to two or multi-task demands is called task-switching ability. Task-switching ability is a high-level executive function and declines with age. The transition period of task-switching ability declines occurs at midlife, but with individual differences. Little is known about how middle-aged adults modulate brain activation to prevent or handle such declines. Tai Chi Chuan (TCC) exercise training has been shown to improve task-switching performance in older adults. However, how TCC exercise training induces changes in the neural mechanisms of task-switching remains unknown. This dissertation had three purposes: (1) to investigate age differences in non-switch and switch performances and associated functional activations across young, middle-aged, and older adults, with particular focus on the middle-aged in Study One; (2) to investigate whether TCC exercise training has effects on task-switching associated brain functional activations in older adults in Study Two; and (3) to investigate whether TCC exercise training enhances the integrity of specific task-switching associated white matter (WM) tracts and whether the baseline integrity of these tracts influences TCC training-induced task-switching improvement in middle-aged and older adults in Study Three.
Methods: Study One used a modified Stroop task-functional magnetic resonance imaging (fMRI) paradigm to assess the brain functional activations and behaviors during non-switch and switch conditions, and their interrelationships in young (n = 30), middle-aged (n = 30), and older (n = 30) adults. Study Two used the same task-fMRI paradigm and a randomized controlled trial (RCT) design to examine the changes in functional activations and task-switching performances in older adults randomly assigned to a TCC group (n = 16) and a control group (n = 15) before and after a 12-week TCC exercise intervention. Study Three used diffusion spectrum imaging and a RCT design to investigate the changes in general fractional anisotropy (GFA) values, the indices of WM integrity, of the whole brain and specific task-switching associated WM tracts, and the relationships of the baseline GFA values of these WM tracts to task-switching improvement in middle-aged and older adults randomly assigned to a TCC group (n = 19) and a control group (n = 19) before and after the same 12-week TCC exercise training intervention used in Study Two. In both Studies Two and Three, the TCC group received training in the 24-form Yang-style of TCC exercise three times per week, 60 minutes each time, for 12 weeks. In contrast, the control group did not receive any intervention, but maintained the original lifestyles and received one telephone consultation biweekly. In addition to the imaging data, behavioral task-switching and physical functions were also measured. Results: Study One showed that although all three groups showed the ability to modulate the bilateral prefrontoparietal activations according to task demands, only the middle-aged adults showed that greater left prefrontal activations during task-switching or greater increases of these activations from non-switch to switch conditions were associated with less task-switching errors or shorter reaction time (r = -0.374 – -0.569, p ≤ 0.05). Both Study Two and Study Three showed TCC training-induced improvements in task-switching and physical function. Study Two further revealed that after 12 weeks of TCC training, the TCC participants who had the ability to recruit greater prefrontal activation, particularly in the left superior frontal gyrus, during task-switching presented greater reductions of task-switching errors (r = -0.631, p = 0.021). Study Three provided support for the importance of the baseline integrity of whole brain tracts (r = -0.747, p = 0.001) and specific task-switching associated WM tracts, the prefronto-striatal-thalamo-prefrontal loop (r = -0.800, p < 0.001) and the prefronto-parietal/occipital (r = -0.782, p < 0.001) fiber groups, in predicting error reductions of task-switching performance after 12 weeks of TCC training. In particular, the baseline integrity of the prefronto-striatal-thalamo-prefrontal loop fiber group was the predominant predictor of task-switching improvement after 12 weeks of TCC training (β = -0.875, R2 = 0.495, p < 0.001). Conclusions: Altogether, the results of Study One suggest that the ability to scale up task-switching relevant left prefrontal activation is a unique neural mechanism that middle-aged adults could employ to achieve better task-switching performance. Training that could enhance such modulation ability is therefore recommended to prevent age-related declines in task-switching. The findings of Study Two suggest that TCC could serve as one of type of exercise to enhance task-switching ability because this training could provide benefits to some, although not all, older adults to enhance the function of their prefrontal activations during task-switching. The results of Study Three highlight the importance of the baseline integrity of the prefronto-striatal-thalamo-prefrontal loop fiber group in helping middle-aged and older adults achieve more task-switching improvement after 12 weeks of TCC training. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:42:32Z (GMT). No. of bitstreams: 1 ntu-108-D00428003-1.pdf: 7200574 bytes, checksum: 2a5d3474bf17f84fdfd54fb15dce16fb (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT vi CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Purposes 11 1.3 Hypotheses 12 1.4 Relevance 13 CHAPTER 2 16 Ability to Modulate the Left, but not the Right, Prefrontal Cortex Activity Helps Middle-aged Adults to Achieve Better Task-switching Performance 16 中文摘要 17 English Abstract 18 2.1 Introduction 19 2.2 Methods 23 2.3 Results 28 2.4 Discussion 32 2.5 Conclusion 37 2.6 Acknowledgements 37 CHAPTER 3 56 Task-switching Performance Improvements after Tai Chi Chuan Training Are Associated with Greater Prefrontal Activation in Older Adults 56 中文摘要 57 English Abstract 58 3.1 Introduction 60 3.2 Methods 67 3.3 Results 78 3.4 Discussion 82 3.5 Conclusion 92 3.6 Acknowledgements 93 CHAPTER 4 112 Integrity of Fiber Tracts in the Prefronto-striatal-thalamo-prefrontal Loop Predicts Task-switching Improvement after Tai Chi Chuan Training in Middle-aged and Older Adults 112 中文摘要 113 English Abstract 114 4.1 Introduction 115 4.2 Methods 120 4.3 Results 128 4.4 Discussion 130 4.5 Conclusion 138 4.6 Acknowledgements 138 CHAPTER 5 155 GENERAL DISCUSSION AND CONCLUSIONS 155 REFERENCES 163 APPENDICES 189 Appendix 1. IRB Approval 189 Appendix 2. Subject’s Informed Consent Form 190 Appendix 3. Subject’s Basic Information Survey 198 Appendix 4. Edinburgh Handedness Inventory 200 Appendix 5. Waterloo Footedness Questionnaire-revised 201 Appendix 6. Color Trails Tests-Parts 1 and 2 202 Appendix 7. Montreal Cognitive Assessment 203 Appendix 8. Mini-Mental State Examination 204 Appendix 9. Instrumental Activities of Daily Living 205 Appendix 10. Clinical Dementia Rating 207 Appendix 11. Geriatric Depression Scale-15 208 Appendix 12. Physical Activity Scale for the Elderly 209 Appendix 13. Eyes Opened One-Leg Stance Test 212 Appendix 14. Four Square Step Test 213 Appendix 15. Muscle Strength of Knee Extensors 214 Appendix 16. Six-Minute Walk Test 215 Appendix 17. List of Abbreviations 217 | |
| dc.language.iso | en | |
| dc.subject | 身心運動介入 | zh_TW |
| dc.subject | 擴散頻譜磁振造影 | zh_TW |
| dc.subject | 白質 | zh_TW |
| dc.subject | 執行功能 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 個別化差異 | zh_TW |
| dc.subject | 認知彈性 | zh_TW |
| dc.subject | White matter | en |
| dc.subject | Cognitive flexibility | en |
| dc.subject | fMRI | en |
| dc.subject | Individual differences | en |
| dc.subject | Executive function | en |
| dc.subject | Mind-body exercise intervention | en |
| dc.subject | Diffusion spectrum imaging | en |
| dc.title | 太極拳運動改善中老年人轉換任務功能之療效與神經機制探討:神經認知與神經影像研究 | zh_TW |
| dc.title | Investigation of Task-switching Effects and the Underlying Neural Mechanisms of Tai Chi Chuan Exercise Training in Middle-aged and Older Adults: Neurocognitive and Neuroimaging Studies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曾文毅,周泰立,吳恩賜,張育愷 | |
| dc.subject.keyword | 認知彈性,功能性磁振造影,個別化差異,執行功能,身心運動介入,擴散頻譜磁振造影,白質, | zh_TW |
| dc.subject.keyword | Cognitive flexibility,fMRI,Individual differences,Executive function,Mind-body exercise intervention,Diffusion spectrum imaging,White matter, | en |
| dc.relation.page | 220 | |
| dc.identifier.doi | 10.6342/NTU201900503 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-02-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-03-05 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 7.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
