請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | |
| dc.contributor.author | Ju-Hsien Cheng | en |
| dc.contributor.author | 鄭濡賢 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:44Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | 1. 劉鎧毓, 八隅體桁架結構製作與強度探討, in 機械工程學研究所. 2018, 國立臺灣大學: 台北市. p. 120.
2. 3D printing. https://en.wikipedia.org/wiki/3D_printing. 3. Industrial SLA/DLP vs. Desktop SLA/DLP. https://www.3dhubs.com/knowledge-base/industrial-sladlp-vs-desktop-sladlp, 2019. 4. Instruments, T., Geometric Optics for DLP®. 2013. 5. 胡又仁, DLP光致聚合樹脂剛性探討, in 機械工程學研究所. 2018, 國立臺灣大學: 台北市. p. 142. 6. de Ciurana, J., L. Serenóa, and È. Vallès, Selecting Process Parameters in RepRap Additive Manufacturing System for PLA Scaffolds Manufacture. Procedia CIRP, 2013. 5: p. 152-157. 7. Moroni, L., J.R. de Wijn, and C.A. van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, 2006. 27(7): p. 974-985. 8. Tsopanos, S., et al., The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures. Journal of Manufacturing Science and Engineering, 2010. 132(4): p. 041011-041011-12. 9. Compton, B.G. and J.A. Lewis, 3D-Printing of Lightweight Cellular Composites. Advanced Materials, 2014. 26(34): p. 5930-5935. 10. Jang, D., et al., Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Materials, 2013. 12: p. 893. 11. Tamjid, E. and A. Simchi, Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses. Materials & Design, 2015. 88: p. 924-931. 12. Hornbeck, L.J., Digital Light Processing for High-Brightness, High-Resolution Applications. 1997: p. 28-30. 13. 林軒邑, 以數位光學處理進行3D列印製作微米級結構, in 機械工程學研究所. 2017, 國立臺灣大學: 台北市. p. 129. 14. 葉至翔, 下照式光固化3D列印系統分離應力分析與研究, in 機械工程系. 2016, 國立臺灣科技大學: 台北市. p. 89. 15. 賴俊宏, 手機 3D 列印系統低分離力樹脂槽之開發研究, in 機械工程系. 2018, 國立臺灣科技大學: 台北市. p. 86. 16. Gauvin, R., et al., Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012. 33(15): p. 3824-3834. 17. Zheng, X., et al., Ultralight, ultrastiff mechanical metamaterials. Science, 2014. 344(6190): p. 1373. 18. Schaedler, T.A., et al., Ultralight Metallic Microlattices. Science, 2011. 334(6058): p. 962. 19. Gibson, L.J., M.F. Ashby, and B.A. Harley, Cellular materials in nature and medicine. 2010: Cambridge University Press. 20. Habibi, M.K. and Y. Lu, Crack Propagation in Bamboo's Hierarchical Cellular Structure. Scientific Reports, 2014. 4: p. 5598. 21. 蘇柏向, 微米級積層製造系統大面積微結構曝光之研究, in 機械工程系. 2015, 國立臺灣科技大學: 台北市. p. 73. 22. Introduction to Arduino Mega 2560. Available from: https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-mega-2560.html. 23. Kazuno, K., Ball screw. 2009, Google Patents. 24. 全功能型小數五位天平. Available from: https://www.tenbin.com.tw/product_881114.html. 25. 超音波振盪機 D標準型系列. Available from: http://www.delta-ultrasonic.com.tw/. 26. 王鵬瑞, 灰階修正對數位光處理3D列印之探討, in 機械工程學研究所. 2017, 國立臺灣大學: 台北市. p. 153. 27. G-Code: The CNC Programming Language. Available from: https://www.autodesk.com/products/fusion-360/blog/cnc-programming-fundamentals-g-code/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73808 | - |
| dc.description.abstract | 本論文的研究方向為透過數位光學處理(Digital Light Processing, DLP)進行3D列印,選用光固化上照式成型系統,搭配高精度三軸步進式移動平台,設計出能製作大面積微結構的3D列印機,相較於以往的單軸步進式移動平台,本系統能夠印製出接近相同尺寸,且面積擴大16倍的規則性微結構,更能貼近實際產業應用的需求。
而對此微結構在製程上的影響會以切層厚度、樹脂配方、曝光時間等主要列印參數分別進行探討,以及如何解決過度固化的方式,最後在結構印製完成後,則是對不同結構進行壓力測試,三種不同面積大小結構的抗壓能力依序為4x4結構最好、2x2結構次之、1x1結構最差,而三種結構在此條件下的壓縮測試中所得到的抗壓強度並無明顯的比例關係。 | zh_TW |
| dc.description.abstract | The purpose of this research is to produce large-area micro-scale structures by 3D printing through Digital Light Processing (DLP), using a Top Exposure Stereolithography System, combined with a high precision three-axis stepping motor platform. Compared with the previous single-axis stepping motor platform, this system can print regular micro-structures that are close to the same size and 16 times larger in area. These structures will have more opportunity to supply the need of practical industrial.
The influence of the micro-scale structure on the process will be discussed separately with the main printing parameters such as slice thickness, resin formulation and exposure time, and the solution to the over-curing. Then, after the structure is printed. The structure will subjected to pressure test. According to the experiment, the compressive strength of the three different area structures, 4x4 structure is the best, 2x2 structure is the second, and the 1x1 structure is the worst. The compression test of the three structures under this condition has no obvious proportional relationship. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:44Z (GMT). No. of bitstreams: 1 ntu-108-R06522529-1.pdf: 8545505 bytes, checksum: 4d2bfc721bb747f22cd69ab8a3e49819 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 積層製造技術 4 2.1.1 光固化成型技術 (Vat Polymerization) 4 2.1.2 材料擠出成型技術 (Material Extrusion) 6 2.1.3 粉體融化成型技術 (Powder Bed Fusion) 7 2.1.4 材料噴塗成型技術 (Material Jetting) 8 2.1.5 指向性能量沉積技術 (Directed Energy Deposition) 9 2.1.6 疊層製造技術 (Sheet Lamination) 10 2.1.7 黏著劑噴塗成型技術 (Binder Jetting) 11 2.2 DLP光固化成型技術 13 2.2.1 DLP投影機 13 2.2.2 DMD晶片 14 2.2.3 DLP光固化上照式與下照式比較 15 2.3 雙光子聚合微製造技術 18 2.4 微架構 19 2.4.1 含微架構材料 19 2.4.2 晶格狀結構 20 第三章 實驗架設與設備 21 3.1 系統架構 21 3.1.1 投影機 21 3.1.2 顯微物鏡 26 3.1.3 CCD對焦系統 27 3.1.4 Arduino 36 3.1.5 步進馬達與驅動器 38 3.1.6 三軸移動平台與校正 40 3.2 實驗相關設備 47 3.2.1 電子天平 47 3.2.2 超音波振盪機 48 3.2.3 立體顯微鏡 49 3.2.4 金相顯微鏡搭配相機 50 3.2.5 電子顯微鏡SEM(Scanning Electron Microscope) 50 3.3 樹脂選用 52 3.4 壓力測試相關設備 52 3.4.1 Load Cell力量感測器 53 3.4.2 LVDT 55 3.4.3 試驗流程 57 第四章 實驗原理與方法 60 4.1 實驗原理 60 4.1.1 DLP 3D列印原理 60 4.1.2 3D列印流程 60 4.2 移動平台指令 63 4.2.1 G Code 63 4.2.2 平台移動路徑分析 66 4.3 過度固化處理 68 4.3.1 加入蘇丹 68 4.3.2 灰階調整 71 第五章 實驗結果 74 5.1 晶格狀結構印製 75 5.1.1 1x1結構印製 75 5.1.2 2x2結構印製 78 5.1.3 4x4結構印製 79 5.1.4 小結 92 5.2 晶格狀結構測試 93 5.2.1 1x1結構強度 93 5.2.2 2x2結構強度 94 5.2.3 4x4結構強度 95 5.2.4 剛性探討 96 第六章 結論與未來展望 98 6.1 結論 98 6.2 未來展望 99 參考文獻 100 附錄 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光固化上照式系統 | zh_TW |
| dc.subject | 大面積微結構 | zh_TW |
| dc.subject | 數位光學處理 | zh_TW |
| dc.subject | 壓力測試 | zh_TW |
| dc.subject | DLP | en |
| dc.subject | Top Exposure Stereolithography System | en |
| dc.subject | large area micro-scale structure | en |
| dc.subject | compression test | en |
| dc.title | 以DLP進行3D列印製作大面積微米級結構 | zh_TW |
| dc.title | 3D printing large area micro-scale structure fabrication by Digital Light Processing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭憶中,林志郎 | |
| dc.subject.keyword | 數位光學處理,光固化上照式系統,大面積微結構,壓力測試, | zh_TW |
| dc.subject.keyword | DLP,Top Exposure Stereolithography System,large area micro-scale structure,compression test, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201902696 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
