Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宜廷(Yi-Ting Chen)
dc.contributor.authorBo-Hao Wangen
dc.contributor.author王柏皓zh_TW
dc.date.accessioned2021-06-17T08:10:37Z-
dc.date.available2020-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationAlmon, S. (1965): “The distributed lag between capital appropriations and expenditures,” Econometrica, 33, 178-196.
Andreou, E., E. Ghysels, and A. Kourtellos (2013): “Should macroeconomic forecasters use daily financial data and how?” Journal of Business and Economic Statistics, 31, 240–251.
Aruoba, S. B., F. X. Diebold, and C. Scotti (2009): “Real-time measurement of business conditions,” Journal of Business and Economic Statistics, 27, 417–427.
Bai, J. and S. Ng (2002): “Determining the number of factors in approximate factor models,” Econometrica, 70, 191–221.
Bai, J. and S. Ng (2006): “Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions,” Econometrica, 74, 1133–1150.
Bai, J. and S. Ng (2007): “Determining the number of primitive shocks in factor models,” Journal of Business and Economic Statistics, 25, 52–60.
Bai, J. and S. Ng (2008): “Large dimensional factor analysis,” Foundations and Trends in Econometrics, 3, 89–163.
Bartelsman, E. J. and Z. Wolf (2014): “Forecasting aggregate productivity using information from firm-level data,” The Review of Economics and Statistics, 96, 745-755.
Clements, M. P. and A. B. Galvo (2008): “Macroeconomic forecasting with mixed-frequency data,” Journal of Business & Economic Statistics, 26, 546–554.
Figlewski, S., H. Frydman, and W. Liang (2012): “Modeling the effect of macroeconomic factors on corporate default and credit rating transitions,” International Review of Economics and Finance, 21, 87–105.
Fornaro, P. (2016): “Predicting Finnish economic activity using firm-level data,” International Journal of Forecasting, 32, 10–19.
Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2003): “Do financial variables help forecasting inflation and real activity in the euro area?” Journal of Monetary Economics, 50, 1243–1255.
Gabaix, X. (2011): “The granular origins of aggregate fluctuations,” Econometrica, 79, 733–772.
Ghysels, E., V. Kvedaras, and V. Zemlys (2016): “ Mixed frequency data sampling regression models: The R package midasr,” Journal of Statistical Software, 72.
Ghysels, E., P. Santa-Clara, and R. Valkanov (2004): “The MIDAS touch: Mixed data sampling regression models,” University of North Carolina and UCLA Discussion Paper.
Ghysels, E., P. Santa-Clara, and R. Valkanov (2006): “Predicting volatility: Getting the most out of return data sampled at different frequencies,” Journal of Econometrics, 131, 59–95.
Jurado, K., S. C. Ludvigson, and S. Ng (2015): “Measuring uncertainty,” American Economic Review, 105, 1177–1216.
Kim, H. H. and N. R. Swanson (2018): “Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods,” International Journal of Forecasting, 34, 339–354.
Korajczyk, R. A. and A. Levy (2003): “Capital structure choice: macroeconomic conditions and financial constraints,” Journal of Financial Economics, 68, 75–109.
Ludvigson, S. C. and S. Ng (2009): “A factor analysis of bond risk premia,” Working paper 15188, National Bureau of Economic Research.
Marcellino, M. and C. Schumacher (2010): “Factor MIDAS for nowcasting and forecasting with ragged-edge data: A model comparison for German GDP,” Oxford Bulletin of Economics and Statistics, 72, 518–550.
McCracken, M. W. and S. Ng (2016): “FRED-MD: A monthly database for macroeconomic research,” Journal of Business and Economic Statistics, 34, 574– 589.
Monteforte, L. and G. Moretti (2013): “Real-time forecasts of inflation: The role of financial variables,” Journal of Forecasting, 32, 51–61.
Nash, J. C. and R. Varadhan (2011): “Unifying optimization algorithms to aid software system users: optimx for R ,” Journal of Statistical Software, 43.
Stock, J. H. and M. W. Watson (1996): “Evidence on structural instability in macroeconomic time series relations,” Journal of Business and Economic Statistics, 14, 11–30.
Stock, J. H. and M. W. Watson (1998): “Diffusion indexes,” Working paper 6702, National Bureau of Economic Research.
Stock, J. H. and M. W. Watson (1999): “Forecasting inflation,” Journal of Monetary Economics, 44, 293–335.
Stock, J. H. and M. W. Watson (2002): “Macroeconomic forecasting using diffusion indexes,” Journal of Business and Economic Statistics, 20, 147–162.
Stock, J. H. and M. W. Watson (2003): “Forecasting output and inflation: The role of asset prices,” Journal of Economic Literature, 41, 788–829.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73803-
dc.description.abstract在本文中,我們評估總體資料、廠商資料和高頻資料能否幫助預測美國工業生產指數和通貨膨脹,並藉由動態因子模型和因子混頻抽樣迴歸模型(MIDAS)進行實證研究。研究結果顯示,除了廣泛使用於預測工業生產指數和通貨膨脹的總體資料外,廠商以及高頻資料可能也包含有助於長期預測的訊息。zh_TW
dc.description.abstractIn this thesis, we assess the performance of a large-dimensional set of macro-level, firm-level and daily predictors in forecasting the industrial production and inflation of the U.S. We base this empirical study on the dynamic factor model and the factor mixed data sampling regression (MIDAS). The empirical study shows that the firm-level and high-frequency predictors may contain useful information in addition to the widely used macro-level predictors in the long-term forecast of the industrial production and inflation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:10:37Z (GMT). No. of bitstreams: 1
ntu-108-R06323044-1.pdf: 1042900 bytes, checksum: 9119974a7d9a6bdda6ae3a757791bc0a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
摘要 ii
Abstract iii
Contents iv
List of Figures v
List of Tables vi
1 Introduction 1
2 Econometric Models 4
2.1 Dynamic factor model 4
2.2 Factor MIDAS 5
3 Empirical Analysis 7
3.1 Data 7
3.2 Empirical Design 8
3.3 Empirical Findings 10
4 Conclusion 21
References 22
A Appendix 25
A.1 Macro-level data 25
A.2 Firm-level data 25
A.3 Daily data 30
A.4 Model selection 34
dc.language.isoen
dc.subject高頻資料zh_TW
dc.subject經濟預測zh_TW
dc.subject廠商資料zh_TW
dc.subject因子模型zh_TW
dc.subjectMIDAS迴歸zh_TW
dc.subjectEconomic forecastingen
dc.subjectFirm-level dataen
dc.subjectHigh-frequency dataen
dc.subjectMIDASen
dc.subjectFactor modelen
dc.title以總體、廠商及高頻資料所進行之經濟預測zh_TW
dc.titleEconomic Forecasts by Macro-level, Firm-level and High-frequency Dataen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor殷壽鏞(Shou-Yung Yin)
dc.contributor.oralexamcommittee許育進(Yu-Chin Hsu),劉祝安(Chu-An Liu)
dc.subject.keyword經濟預測,廠商資料,高頻資料,MIDAS迴歸,因子模型,zh_TW
dc.subject.keywordEconomic forecasting,Firm-level data,High-frequency data,MIDAS,Factor model,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201903326
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved