請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73802完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張芳嘉(Fang-Chia Chang) | |
| dc.contributor.author | Hsin-Tzu Tseng | en |
| dc.contributor.author | 曾信慈 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:35Z | - |
| dc.date.available | 2021-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | [1] I.E. Scheffer, S. Berkovic, G. Capovilla, M.B. Connolly, J. French, L. Guilhoto, E. Hirsch, S. Jain, G.W. Mathern, S.L. Moshe, D.R. Nordli, E. Perucca, T. Tomson, S. Wiebe, Y.H. Zhang, S.M. Zuberi, ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology, Epilepsia, 58 (2017) 512-521.
[2] C.E. Stafstrom, Back to Basics: The Pathophysiology of Epileptic Seizures: A Primer For Pediatricians, Pediatrics in Review, 19 (1998) 342-351. [3] S.M. Lasley, Roles of neurotransmitter amino acids in seizure severity and experience in the genetically epilepsy-prone rat, Brain Res, 560 (1991) 63-70. [4] K.G. Haglid, S. Wang, Y. Qiner, A. Hamberger, Excitotoxicity. Experimental correlates to human epilepsy, Mol Neurobiol, 9 (1994) 259-263. [5] A.M. Dam, Epilepsy and neuron loss in the hippocampus, Epilepsia, 21 (1980) 617-629. [6] X.X. Dong, Y. Wang, Z.H. Qin, Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases, Acta Pharmacol Sin, 30 (2009) 379-387. [7] A. Vezzani, J. French, T. Bartfai, T.Z. Baram, The role of inflammation in epilepsy, Nat Rev Neurol, 7 (2011) 31-40. [8] D.K. Binder, S.D. Croll, C.M. Gall, H.E. Scharfman, BDNF and epilepsy: too much of a good thing?, Trends Neurosci, 24 (2001) 47-53. [9] E. Forster, T. Naumann, T. Deller, A. Straube, R. Nitsch, M. Frotscher, Cholinergic sprouting in the rat fascia dentata after entorhinal lesion is not linked to early changes in neurotrophin messenger RNA expression, Neuroscience, 80 (1997) 731-739. [10] A. Popa-Wagner, B. Fischer, H. Schmoll, D. Platt, C. Kessler, Increased expression of microtubule-associated protein 1B in the hippocampus, subiculum, and perforant path of rats treated with a high dose of pentylenetetrazole, Exp Neurol, 148 (1997) 73-82. [11] T. Sutula, G. Cascino, J. Cavazos, I. Parada, L. Ramirez, Mossy fiber synaptic reorganization in the epileptic human temporal lobe, Ann Neurol, 26 (1989) 321-330. [12] S.C. Danzer, K.R. Crooks, D.C. Lo, J.O. McNamara, Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures, J Neurosci, 22 (2002) 9754-9763. [13] D. Minecan, A. Natarajan, M. Marzec, B. Malow, Relationship of epileptic seizures to sleep stage and sleep depth, Sleep, 25 (2002) 899-904. [14] N. Leresche, R.C. Lambert, A.C. Errington, V. Crunelli, From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?, Pflugers Arch, 463 (2012) 201-212. [15] M.N. Shouse, P.R. Farber, R.J. Staba, Physiological basis: how NREM sleep components can promote and REM sleep components can suppress seizure discharge propagation, Clin Neurophysiol, 111 (2000) S9-S18. [16] B.A. Malow, Sleep deprivation and epilepsy, Epilepsy Curr, 4 (2004) 193-195. [17] L. Kandratavicius, P.A. Balista, C. Lopes-Aguiar, R.N. Ruggiero, E.H. Umeoka, N. Garcia-Cairasco, L.S. Bueno-Junior, J.P. Leite, Animal models of epilepsy: use and limitations, Neuropsychiatr Dis Treat, 10 (2014) 1693-1705. [18] E.A. van Vliet, J.A. Gorter, Chapter 33 - Electrical Stimulation Seizure Models, in: A. Pitkänen, P.S. Buckmaster, A.S. Galanopoulou, S.L. Moshé (Eds.) Models of Seizures and Epilepsy (Second Edition), Academic Press2017, pp. 474-488. [19] J.O. McNamara, Kindling: an animal model of complex partial epilepsy, Ann Neurol, 16 Suppl (1984) S72-76. [20] K.C. Ross, J.R. Coleman, Developmental and genetic audiogenic seizure models: behavior and biological substrates, Neurosci Biobehav Rev, 24 (2000) 639-653. [21] N. Garcia-Cairasco, J.A. Oliveira, H. Wakamatsu, S.T. Bueno, F.S. Guimaraes, Reduced exploratory activity of audiogenic seizures susceptible Wistar rats, Physiol Behav, 64 (1998) 671-674. [22] K. Sarkisova, G. van Luijtelaar, The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected], Prog Neuropsychopharmacol Biol Psychiatry, 35 (2011) 854-876. [23] E.L. van Luijtelaar, W.H. Drinkenburg, C.M. van Rijn, A.M. Coenen, Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects?, Methods Find Exp Clin Pharmacol, 24 Suppl D (2002) 65-70. [24] N.C. Jones, T.J. O'Brien, K.L. Powell, Morphometric changes and molecular mechanisms in rat models of idiopathic generalized epilepsy with absence seizures, Neurosci Lett, 497 (2011) 185-193. [25] A.K. Sharma, R.Y. Reams, W.H. Jordan, M.A. Miller, H.L. Thacker, P.W. Snyder, Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions, Toxicol Pathol, 35 (2007) 984-999. [26] R. Raedt, A. Van Dycke, D. Van Melkebeke, T. De Smedt, P. Claeys, T. Wyckhuys, K. Vonck, W. Wadman, P. Boon, Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat, Acta Neurol Scand, 119 (2009) 293-303. [27] A. Dhir, Pentylenetetrazol (PTZ) kindling model of epilepsy, Curr Protoc Neurosci, Chapter 9 (2012) Unit9 37. [28] J.A. French, Refractory epilepsy: clinical overview, Epilepsia, 48 Suppl 1 (2007) 3-7. [29] J.W. Miller, S. Hakimian, Surgical treatment of epilepsy, Continuum (Minneap Minn), 19 (2013) 730-742. [30] S.C. Mak, C.S. Chi, C.J. Wan, Clinical experience of ketogenic diet on children with refractory epilepsy, Acta Paediatr Taiwan, 40 (1999) 97-100. [31] D.L. Keene, A systematic review of the use of the ketogenic diet in childhood epilepsy, Pediatr Neurol, 35 (2006) 1-5. [32] E.H. Kossoff, H.S. Wang, Dietary therapies for epilepsy, Biomed J, 36 (2013) 2-8. [33] V.A. Sironi, Origin and evolution of deep brain stimulation, Front Integr Neurosci, 5 (2011) 42. [34] N.G. Laxpati, W.S. Kasoff, R.E. Gross, Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials, Neurotherapeutics, 11 (2014) 508-526. [35] W. Meissner, A. Leblois, D. Hansel, B. Bioulac, C.E. Gross, A. Benazzouz, T. Boraud, Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations, Brain, 128 (2005) 2372-2382. [36] D.S. Shin, M. Samoilova, M. Cotic, L. Zhang, J.M. Brotchie, P.L. Carlen, High frequency stimulation or elevated K+ depresses neuronal activity in the rat entopeduncular nucleus, Neuroscience, 149 (2007) 68-86. [37] G. Florence, M.A. Dahlem, A.C. Almeida, J.W. Bassani, J. Kurths, The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study, J Theor Biol, 258 (2009) 219-228. [38] R. Ammari, B. Bioulac, L. Garcia, C. Hammond, The Subthalamic Nucleus becomes a Generator of Bursts in the Dopamine-Depleted State. Its High Frequency Stimulation Dramatically Weakens Transmission to the Globus Pallidus, Front Syst Neurosci, 5 (2011) 43. [39] T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction, Science, 331 (2011) 599-601. [40] L. Weltha, J. Reemmer, D. Boison, The role of adenosine in epilepsy, Brain Res Bull, DOI 10.1016/j.brainresbull.2018.11.008(2018). [41] M. Jakobs, A. Fomenko, A.M. Lozano, K.L. Kiening, Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments, EMBO Molecular Medicine, 11 (2019) e9575. [42] J.W. Papez, A proposed mechanism of emotion. 1937, J Neuropsychiatry Clin Neurosci, 7 (1995) 103-112. [43] H. Oikawa, M. Sasaki, Y. Tamakawa, A. Kamei, The circuit of Papez in mesial temporal sclerosis: MRI, Neuroradiology, 43 (2001) 205-210. [44] P. Bondallaz, C. Boex, A.O. Rossetti, G. Foletti, L. Spinelli, S. Vulliemoz, M. Seeck, C. Pollo, Electrode location and clinical outcome in hippocampal electrical stimulation for mesial temporal lobe epilepsy, Seizure, 22 (2013) 390-395. [45] J. Lian, M. Bikson, C. Sciortino, W.C. Stacey, D.M. Durand, Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro, J Physiol, 547 (2003) 427-434. [46] H. Jin, W. Li, C. Dong, J. Wu, W. Zhao, Z. Zhao, L. Ma, F. Ma, Y. Chen, Q. Liu, Hippocampal deep brain stimulation in nonlesional refractory mesial temporal lobe epilepsy, Seizure, 37 (2016) 1-7. [47] A. Cukiert, C.M. Cukiert, J.A. Burattini, P.P. Mariani, D.F. Bezerra, Seizure outcome after hippocampal deep brain stimulation in patients with refractory temporal lobe epilepsy: A prospective, controlled, randomized, double-blind study, Epilepsia, 58 (2017) 1728-1733. [48] T. Wyckhuys, T. De Smedt, P. Claeys, R. Raedt, L. Waterschoot, K. Vonck, C. Van den Broecke, C. Mabilde, L. Leybaert, W. Wadman, P. Boon, High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats, Epilepsia, 48 (2007) 1543-1550. [49] M. Miatton, D. Van Roost, E. Thiery, E. Carrette, A. Van Dycke, K. Vonck, A. Meurs, G. Vingerhoets, P. Boon, The cognitive effects of amygdalohippocampal deep brain stimulation in patients with temporal lobe epilepsy, Epilepsy Behav, 22 (2011) 759-764. [50] N.D. Child, E.E. Benarroch, Anterior nucleus of the thalamus: functional organization and clinical implications, Neurology, 81 (2013) 1869-1876. [51] M.A. Mirski, J.A. Ferrendelli, Anterior thalamic mediation of generalized pentylenetetrazol seizures, Brain Res, 399 (1986) 212-223. [52] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I. Osorio, J. Nazzaro, D. Labar, M. Kaplitt, M. Sperling, E. Sandok, J. Neal, A. Handforth, J. Stern, A. DeSalles, S. Chung, A. Shetter, D. Bergen, R. Bakay, J. Henderson, J. French, G. Baltuch, W. Rosenfeld, A. Youkilis, W. Marks, P. Garcia, N. Barbaro, N. Fountain, C. Bazil, R. Goodman, G. McKhann, K.B. Krishnamurthy, S. Papavassiliou, C. Epstein, J. Pollard, L. Tonder, J. Grebin, R. Coffey, N. Graves, S.S. Grp, Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy, Epilepsia, 51 (2010) 899-908. [53] C. Beurrier, B. Bioulac, J. Audin, C. Hammond, High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons, J Neurophysiol, 85 (2001) 1351-1356. [54] H.G. Liu, A.C. Yang, D.W. Meng, N. Chen, J.G. Zhang, Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats, Brain Res, 1477 (2012) 37-44. [55] F. Mina, P. Benquet, A. Pasnicu, A. Biraben, F. Wendling, Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects, Front Comput Neurosci, 7 (2013) 94. [56] S. Toprani, D.M. Durand, Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation, J Physiol, 591 (2013) 5765-5790. [57] K.B. Kile, N. Tian, D.M. Durand, Low frequency stimulation decreases seizure activity in a mutation model of epilepsy, Epilepsia, 51 (2010) 1745-1753. [58] A.B. Kowski, M. Holtkamp, Electrically induced limbic seizures: preliminary findings in a rodent model, J Exp Neurosci, 9 (2015) 7-14. [59] J. Nissinen, T. Halonen, E. Koivisto, A. Pitkanen, A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat, Epilepsy Res, 38 (2000) 177-205. [60] S.B. Jou, I.F. Kao, P.L. Yi, F.C. Chang, Electrical stimulation of left anterior thalamic nucleus with high-frequency and low-intensity currents reduces the rate of pilocarpine-induced epilepsy in rats, Seizure, 22 (2013) 221-229. [61] F. Fang, H. Lei, Increased hippocampal T2 in a rat model of pentylenetetrazol-induced kindling correlates with seizure scores, J Neurol Sci, 292 (2010) 16-23. [62] K. Itoh, M. Watanabe, K. Yoshikawa, Y. Kanaho, L.J. Berliner, H. Fujii, Magnetic resonance and biochemical studies during pentylenetetrazole-kindling development: the relationship between nitric oxide, neuronal nitric oxide synthase and seizures, Neuroscience, 129 (2004) 757-766. [63] C. Hamani, F.I. Ewerton, S.M. Bonilha, G. Ballester, L.E. Mello, A.M. Lozano, Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus, Neurosurgery, 54 (2004) 191-195; discussion 195-197. [64] T.A.M. Bouwens van der Vlis, O. Schijns, F. Schaper, G. Hoogland, P. Kubben, L. Wagner, R. Rouhl, Y. Temel, L. Ackermans, Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy, Neurosurg Rev, 42 (2019) 287-296. [65] T. Hallbook, J. Lundgren, I. Rosen, Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy, Epilepsia, 48 (2007) 59-65. [66] B.A. Malow, J. Edwards, M. Marzec, O. Sagher, D. Ross, G. Fromes, Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients, Neurology, 57 (2001) 879-884. [67] S.V. Jain, T.A. Glauser, Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics, Epilepsia, 55 (2014) 26-37. [68] B.R. Voges, F.C. Schmitt, W. Hamel, P.M. House, C. Kluge, C.K. Moll, S.R. Stodieck, Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients, Epilepsia, 56 (2015) e99-e103. [69] F.C. Schmitt, A. Ilse, W. Hamel, P.M. House, C.K. Moll, H. Lee, S.R. Stodieck, B.R. Voges, EP 72. Effect of deep brain stimulation on sleep is outcome-dependent in patients with temporal lobe seizures, Clin Neurophysiol, 127 (2016) e189. [70] I. Bucurenciu, A.M. Staack, A. Gharabaghi, B. Steinhoff, FV 7 High-frequency anterior thalamus stimulation increases alertness in epilepsy patients during alert- and drowsy-wakefulness, Clin Neurophysiol, 128 (2017) e309. [71] C. Monaca, C. Ozsancak, J.M. Jacquesson, I. Poirot, S. Blond, A. Destee, J.D. Guieu, P. Derambure, Effects of bilateral subthalamic stimulation on sleep in Parkinson's disease, J Neurol, 251 (2004) 214-218. [72] M. Schönherr, H. Stefan, H.M. Hamer, K. Rössler, M. Buchfelder, S. Rampp, The delta between postoperative seizure freedom and persistence: Automatically detected focal slow waves after epilepsy surgery, Neuroimage Clin, 13 (2016) 256-263. [73] A.J. Kundishora, A. Gummadavelli, C. Ma, M. Liu, C. McCafferty, N.D. Schiff, J.T. Willie, R.E. Gross, J. Gerrard, H. Blumenfeld, Restoring Conscious Arousal During Focal Limbic Seizures with Deep Brain Stimulation, Cereb Cortex, 27 (2017) 1964-1975. [74] J. Kapur, Role of NMDA receptors in the pathophysiology and treatment of status epilepticus, Epilepsia Open, 3 (2018) 165-168. [75] A. Zapata, J.L. Capdevila, G. Tarrason, J. Adan, J.M. Martinez, J. Piulats, R. Trullas, Effects of NMDA-R1 antisense oligodeoxynucleotide administration: behavioral and radioligand binding studies, Brain Res, 745 (1997) 114-120. [76] R. Haberman, H. Criswell, S. Snowdy, Z. Ming, G. Breese, R. Samulski, T. McCown, Therapeutic liabilities of in vivo viral vector tropism: adeno-associated virus vectors, NMDAR1 antisense, and focal seizure sensitivity, Mol Ther, 6 (2002) 495-500. [77] M.R. Fernandez-Cabrera, A. Selvas, M. Miguens, A. Higuera-Matas, A. Vale-Martinez, E. Ambrosio, M. Marti-Nicolovius, G. Guillazo-Blanch, Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex, Neuroscience, 348 (2017) 73-82. [78] B. Viviani, S. Bartesaghi, F. Gardoni, A. Vezzani, M.M. Behrens, T. Bartfai, M. Binaglia, E. Corsini, M. Di Luca, C.L. Galli, M. Marinovich, Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases, The Journal of Neuroscience, 23 (2003) 8692. [79] B.O. Amorim, L. Covolan, E. Ferreira, J.G. Brito, D.P. Nunes, D.G. de Morais, J.N. Nobrega, A.M. Rodrigues, A.C. deAlmeida, C. Hamani, Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats, J Neuroinflammation, 12 (2015) 162. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73802 | - |
| dc.description.abstract | 癲癇為常見的神經疾病,大約影響世界1%的人口,而其中三分之一的病患為所謂的頑固型癲癇,是無法被抗癲癇藥物控制的癲癇類型。手術切除癲癇中心是一種治療頑固型癲癇的方式,但並不是所有病患適合這項手術。因此,其他治療方式,像是腦部深層電刺激,迫切地需要應用在頑固型癲癇的治療上。腦部深層電刺激 (DBS) 最開始用於治療運動失調的疾病,像是巴金森氏症。由於視丘前核 (The anterior nucleus of the thalamus, ANT) 可經由扣帶迴 (Cingulate gyrus)投射訊息到大範圍的大腦皮質,所以目前ANT是被看好具有良好的抗癲癇效果之目標核區。在本篇研究中,我們將評估ANT DBS對於經由戊四氮(Pentylenetetrazol, PTZ) 所誘導的癲癇大鼠之抗癲癇功效、對睡眠的影響,以及探討DBS抑制癲癇之機制為何。實驗室先前的研究指出在利用毛果芸香鹼(pilocarpine) 誘導癲癇產生之前一小時給予ANT DBS的抗癲癇效果勝過前半小時給予電刺激治療。本篇研究將大鼠分為三組:單純給予PTZ之癲癇組、給予PTZ並搭配藥物注射前10分鐘給予ANT DBS持續30分鐘之治療組以及給予PTZ並搭配藥物注射前60分鐘給予ANT DBS持續3小時之治療組。我們分析了PTZ注射後到癲癇發作的時間,以及癲癇發作的持續時間。在PTZ注射前四次的結果中,DBS 30分鐘組別之大鼠有較晚發作癲癇以及癲癇持續時間降低的情形。然而在第14次注射PTZ之後,PTZ組別跟給予DBS治療之組別在癲癇發作時間以及持續時間上並沒有明顯差異。ANT DBS的抗癲癇效果在前面幾次的PTZ注射較為顯著。接著我們分析ANT DBS對於癲癇大鼠睡眠的影響。光亮週期之非快速動眼期 (Non-rapid eye movement, NREM) 以及快速動眼期 (Rapid eye movement, REM) 睡眠時間在第一次接受PTZ注射並且搭配30分鐘ANT DBS後有顯著的提升,但這提升的效果只有REM到了第14次注射PTZ並搭配ANT DBS後還能看到顯著差異,而NREM睡眠時間在三組並無差異。ANT DBS 3小時的組別相較於PTZ組別以及ANT DBS 30分鐘組別對於睡眠時間並沒有達到顯著差異。我們發現多次注射PTZ之大鼠會隨著施打PTZ次數增加,其NREM delta power也相對提升,而有接受ANT DBS治療之大鼠其NREM delta power提升的變化量與單純接受PTZ的組別相比有顯著的降低。根據其他研究指出NREM睡眠會促使癲癇產生但REM睡眠則會抑制癲癇產生。ANT DBS能降低NREM delta power,增加癲癇產生的閾值,並且增加REM睡眠時間進而抑制癲癇在睡眠中發生的機率。實驗室先前研究指出PTZ會增加N-methyl-d-aspartate (NMDA) 受體表現量,而NMDA受體在神經興奮性扮演十分重要的角色。我們利用西方墨點法測量NMDA受體其次單位NR1, NR2以及p-NR2在ANT DBS 30分鐘組和PTZ組大腦皮質、海馬迴及視丘的表現量。我們發現在NR2表現量在ANT DBS 30分鐘組的大腦皮質及海馬迴有下降的趨勢,其中大腦皮質下降趨勢甚多,在NR1以及p-NR2的表現量並沒有明顯差異。結果說明ANT DBS可能可以降低興奮性離子通道NMDA受體之表現量而達到抑制癲癇的效果。此篇研究最終目標希望能將實驗結果應用於與台大電機系以及台大醫院合作研發之晶片,並且成功抑制癲癇的傳遞。 | zh_TW |
| dc.description.abstract | Epilepsy is a neuronal disorder and affects 1% population of the world. One-third of patients have refractory epilepsy, which is hard to be controlled with anti-epileptic drugs (AEDs). Resective surgery is an alternative treatment for refractory epilepsy but not all of patients with refractory epilepsy are suitable for this surgery. Therefore, other alternative therapy, such as an electrical stimulation of deep brain structure is a pressing need for refractory epilepsy. Deep brain stimulation (DBS) has used in the treatment of movement disorders, like Parkinson’s disease. The anterior nucleus of the thalamus (ANT) may be a promising brain region for DBS in suppressing epilepsy, because the ANT has a wide projection to neocortex via the cingulate gyrus. In our study, we are going to evaluate the anti-epileptic efficacy of ANT DBS in pentylenetetrazol (PTZ)-induced epilepsy rat model, assess the effects of ANT DBS on sleep in epileptic rats, and determinate the mechanisms of DBS. Our previous study shows that pre-treatment of DBS for 1 hour prior to the epilepsy onset exhibits better anti-epilepsy efficacy than 30 minutes DBS in pilocarpine-induced epilepsy rats. In current study, rats were divided into three groups: the PTZ group, PTZ with 30-min DBS group (stimulation starting 10 mins prior to the PTZ injection) and PTZ with 3-h DBS group (stimulation starting 1 hr prior to the PTZ injection). We analyzed the latency to seizure onset and the duration of seizure after PTZ injections. Rats in the 30-min DBS group showed a longer seizure onset latency and shorter duration of seizure than the PTZ group in the first four times of PTZ injections. However, after 14th time of PTZ injection, there was no significant difference between PTZ group and PTZ with DBS treatment group in the amplitude and the duration of seizure. DBS prolonged the latency to seizure onset and reduce the duration of seizure at the first few times of PTZ injections. We then analyzed the effects of ANT DBS on sleep in the epileptic rats. Both non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep time in light period showed significantly increase in rats received the 1st 30-min DBS, but only the amount of REM sleep remained increasing in rats treated with 30-min DBS after the 14-time PTZ injection. Both NREM sleep and REM sleep in PTZ with 3-h DBS group after the 14-time PTZ injection showed no significant change compared with both PTZ and PTZ with 30-min DBS group. We also found that the delta power during NREM sleep was decreased in epileptic rats with DBS when compared with those without receiving DBS. According to other researches, seizure was facilitated during NREM sleep and suppressed during REM sleep. DBS seems to decrease the power of synchronized brain wave in NREM sleep to increase epilepsy threshold and to increase the amount of REM sleep to suppress epilepsy. Our previous research demonstrated that PTZ increases the expression of the subunits of N-methyl-d-aspartate (NMDA) receptors, which plays important roles in neuronal excitability. The expression of NMDA receptor subunits, NR1, NR2 and p-NR2, in cortex, hippocampus and thalamus after 15 times of ANT DBS and PTZ injection were measured by the Western blot. NR2 was decreased in cortex and hippocampus of ANT DBS 30-min group. NR1 and p-NR2 had no significant difference in ANT DBS 30-min group. The reduction of NMDA receptor expression was involved in the mechanism of ANT-DBS anti-epileptic efficacy. Last, our goal is to apply a close-loop DBS microchip, designed by NTU Department of Electrical Engineering, to the epileptic animals and determine whether the microchip successfully suppresses the seizure propagation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:35Z (GMT). No. of bitstreams: 1 ntu-108-R06629005-1.pdf: 2041462 bytes, checksum: bfa7c907ec8b15a266a9aa3eaf5b37cd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書-i
致謝-ii 中文摘要-3 Abstract-5 1. Introduction-8 1-1 Epilepsy-8 1-2 Epileptogenesis-9 1-3 Epilepsy and sleep-10 1-4 Epilepsy animal models-11 1-5 Refractory epilepsy and treatments-14 1-6 Parameters of DBS-18 2. Specific aims-20 3. Materials and Methods-21 3-1 Animal and electroencephalography (EEG) surgery-21 3-2 Seizure induction and substance-22 3-3 EEG, EMG recording and sleep analysis-23 3-4 Seizure analysis-24 3-5 ANT stimulation-24 3-6 Tissue collection-25 3-7 Western blot-25 3-8 Statistical analysis-27 4. Results-28 4-1 PTZ animal model-28 4-2 The anti-epilepsy efficacy of ANT DBS-29 4-3 The effects of ANT DBS on sleep in the epileptic rats-30 4-4 The molecular mechanism of ANT DBS-32 5. Discussion-33 5-1 Determine the dose and the time of epilepsy rat model-33 5-2 The anti-epilepsy efficacy of ANT DBS-33 5-3 The ANT DBS effects on sleep-35 5-4 The molecular mechanism of ANT DBS-36 6. Conclusions-38 7. Figures-39 Reference-57 | |
| dc.language.iso | en | |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | 視丘前核 | zh_TW |
| dc.subject | 腦部深層電刺激 | zh_TW |
| dc.subject | 睡眠 | zh_TW |
| dc.subject | NMDA受體 | zh_TW |
| dc.subject | sleep | en |
| dc.subject | Anterior nucleus of the thalamus (ANT) | en |
| dc.subject | deep brain stimulation (DBS) | en |
| dc.subject | Epilepsy | en |
| dc.subject | NMDA receptor | en |
| dc.title | 評估腦部深層電刺激術對於癲癇動物模式之抗癲癇功效 | zh_TW |
| dc.title | Evaluate antiepileptic effects of deep brain stimulation in the animal seizure model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 尹珮璐(Pei-Lu Yin),劉宏輝(Hong-Huei Liou),曾勝弘(Sheng-Hung Tseng),周碩彬(Shuo-Bin Jou) | |
| dc.subject.keyword | 癲癇,視丘前核,腦部深層電刺激,睡眠,NMDA受體, | zh_TW |
| dc.subject.keyword | Anterior nucleus of the thalamus (ANT),deep brain stimulation (DBS),Epilepsy,NMDA receptor,sleep, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201903491 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
