Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73785
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃正雅(Cheng-Ya Huang) | |
dc.contributor.author | Chun-Yi Tsai | en |
dc.contributor.author | 蔡俊逸 | zh_TW |
dc.date.accessioned | 2021-06-17T08:10:12Z | - |
dc.date.available | 2024-08-27 | |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | 1. Boonstra TA, Van Der Kooij H, Munneke M, Bloem BR. Gait disorders and balance disturbances in Parkinson's disease: clinical update and pathophysiology. Curr Opin Neurol. 2008;21:461-71.
2. Yogev-Seligmann G, Hausdorff JM, Giladi N. Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov Disord. 2012;27:765-70. 3. Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson's disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res. 2007;177:336-46. 4. Tombu M, Jolicœur P. A central capacity sharing model of dual-task performance. J Exp Psychol Hum Percept Perform. 2003;29:3. 5. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson's disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012:918719. 6. Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp Brain Res. 2010;207:65-73. 7. Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM. Effects of explicit prioritization on dual task walking in patients with Parkinson's disease. Gait Posture. 2012;35:641-6. 8. Yu SH, Huang CY. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults. PLoS One. 2017;12:e0170687. 9. Huang CY, Chen YA, Hwang IS, Wu RM. Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease. Arch Phys Med Rehabil. 2018;99:1540-6 e2. 10. Chen YA. Effects of Attentional Focus on Dual-task Walking in Parkinson’s Disease with Freezer and Non-freezer. Master's thesis, National Taiwan Universtiy; 2018. 11. Chen LC. The Effects of Task Prioritization and Posture Difficulty on Dual-task Control in Early-stage and Mid-stage Parkinson's Disease. Master's thesis, National Taiwan Universtiy; 2018. 12. Plotnik M, Hausdorff JM. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson's disease. Mov Disord. 2008;23 Suppl 2:S444-50. 13. Ferrazzoli D, Fasano A, Maestri R, Bera R, Palamara G, Ghilardi MF, et al. Balance Dysfunction in Parkinson's Disease: The Role of Posturography in Developing a Rehabilitation Program. Parkinsons Dis. 2015;2015:520128. 14. Krasilovsky G, Gianutsos J. Effect of video feedback on the performance of a weight shifting controlled tracking task in subjects with parkinsonism and neurologically intact individuals. Exp Neurol. 1991;113:192-201. 15. Beckley DJ, Panzer VP, Remler MP, Ilog LB, Bloem BR. Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. J Neurol Sci. 1995;132:133-8. 16. King LA, Horak FB. Lateral stepping for postural correction in Parkinson's disease. Arch Phys Med Rehabil. 2008;89:492-9. 17. Jacobs JV, Horak FB. Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease. Neuroscience. 2006;141:999-1009. 18. Bekkers EMJ, Dijkstra BW, Heremans E, Verschueren SMP, Bloem BR, Nieuwboer A. Balancing between the two: Are freezing of gait and postural instability in Parkinson's disease connected? Neurosci Biobehav Rev. 2018;94:113-25. 19. Lee BC, Thrasher TA, Fisher SP, Layne CS. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study. J Neuroeng Rehabil. 2015;12:75. 20. Wu T, Hallett M. Neural correlates of dual task performance in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008;79:760-6. 21. Wu T, Hallett M. Dual task interference in Parkinson’s disease. US Neurology. 2009;5:30-3. 22. Bond JM, Morris M. Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch Phys Med Rehabil. 2000;81:110-6. 23. Morris M, Iansek R, Smithson F, Huxham F. Postural instability in Parkinson's disease: a comparison with and without a concurrent task. Gait Posture. 2000;12:205-16. 24. Sethi V, Raja R. Effects of Dual task training on balance and activities of Daily Livings (ADLs) in patients with Parkinsonism. Int J Biol Med Res. 2012;3:1359-64. 25. Brauer SG, Morris ME. Can people with Parkinson's disease improve dual tasking when walking? Gait Posture. 2010;31:229-33. 26. Fernandes A, Rocha N, Santos R, Tavares JM. Effects of dual-task training on balance and executive functions in Parkinson's disease: A pilot study. Somatosens Mot Res. 2015;32:122-7. 27. Killane I, Fearon C, Newman L, McDonnell C, Waechter SM, Sons K, et al. Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait. IEEE J Biomed Health Inform. 2015;19:1855-61. 28. Canning CG, Ada L, Woodhouse E. Multiple-task walking training in people with mild to moderate Parkinson's disease: a pilot study. Clin Rehabil. 2008;22:226-33. 29. Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM. A training program to improve gait while dual tasking in patients with Parkinson's disease: a pilot study. Arch Phys Med Rehabil. 2012;93:176-81. 30. Buragadda S, Alyaemni A, Melam GR, Alghamdi MA. Effect of dualtask training (fixed priority-versus-variable priority) for improving balance in older adults. World Appl Sci J. 2012;20:884-8. 31. Silsupadol P, Siu KC, Shumway-Cook A, Woollacott MH. Training of balance under single- and dual-task conditions in older adults with balance impairment. Phys Ther. 2006;86:269-81. 32. Silsupadol P, Shumway-Cook A, Lugade V, van Donkelaar P, Chou LS, Mayr U, et al. Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Arch Phys Med Rehabil. 2009;90:381-7. 33. Silsupadol P, Lugade V, Shumway-Cook A, van Donkelaar P, Chou LS, Mayr U, et al. Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait Posture. 2009;29:634-9. 34. Perumal V, Melam GR, Alhusaini AA, Buragadda S, Sharma N. Instruction prioritization in task-based balance training for individuals with idiopathic Parkinson's disease. Somatosens Mot Res. 2017;34:27-33. 35. Fok P, Farrell M, McMeeken J. Prioritizing gait in dual-task conditions in people with Parkinson's. Hum Mov Sci. 2010;29:831-42. 36. Fok P, Farrell M, McMeeken J. The effect of dividing attention between walking and auxiliary tasks in people with Parkinson's disease. Hum Mov Sci. 2012;31:236-46. 37. Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, et al. Training-induced functional activation changes in dual-task processing: an FMRI study. Cereb Cortex. 2006;17:192-204. 38. Hwang IS, Huang CY. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses. PLoS One. 2016;11:e0151906. 39. Sauseng P, Klimesch W, Freunberger R, Pecherstorfer T, Hanslmayr S, Doppelmayr M. Relevance of EEG alpha and theta oscillations during task switching. Exp Brain Res. 2006;170:295-301. 40. Costa A, Ianez E, Ubeda A, Hortal E, Del-Ama AJ, Gil-Agudo A, et al. Decoding the Attentional Demands of Gait through EEG Gamma Band Features. PLoS One. 2016;11:e0154136. 41. Pizzamiglio S, Naeem U, Abdalla H, Turner DL. Neural Correlates of Single- and Dual-Task Walking in the Real World. Front Hum Neurosci. 2017;11:460. 42. Yu SH, Hwang IS, Huang CY. Neuronal Responses to a Postural Dual-Task With Differential Attentional Prioritizations: Compensatory Resource Allocation With Healthy Aging. J Gerontol B Psychol Sci Soc Sci. 2018. 43. Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease. Sci Rep. 2016;6:30424. 44. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. J Psychosom Res. 2002;52:69-77. 45. Tsang PS. Ageing and attentional control. Q J Exp Psychol (Hove). 2013;66:1517-47. 46. Fujita H, Kasubuchi K, Wakata S, Hiyamizu M, Morioka S. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity. Biomed Res Int. 2016;2016:7053867. 47. Papegaaij S, Hortobágyi T, Godde B, Kaan WA, Erhard P, Voelcker-Rehage C. Neural correlates of motor-cognitive dual-tasking in young and old adults. PLoS One. 2017;12:e0189025. 48. Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;71:245-52. 49. Goel R, Nakagome S, Rao N, Paloski WH, Contreras-Vidal JL, Parikh PJ. Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task. Neuroscience. 2019;413:135-53. 50. Meyer S, Kessner SS, Cheng B, Bonstrup M, Schulz R, Hummel FC, et al. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits. Neuroimage Clin. 2016;10:257-66. 51. Meyer S, Kessner SS, Cheng B, Bonstrup M, Schulz R, Hummel FC, et al. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits. Neuroimage Clin. 2016;10:257-66. 52. Filimon F, Nelson JD, Huang RS, Sereno MI. Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. J Neurosci. 2009;29:2961-71. 53. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72:443-54. 54. Robertson EM, Press DZ, Pascual-Leone A. Off-line learning and the primary motor cortex. J Neurosci. 2005;25:6372-8. 55. Domingues CA, Machado S, Cavaleiro EG, Furtado V, Cagy M, Ribeiro P, et al. Alpha absolute power: motor learning of practical pistol shooting. Arq Neuropsiquiatr. 2008;66:336-40. 56. Tuladhar AM, ter Huurne N, Schoffelen JM, Maris E, Oostenveld R, Jensen O. Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp. 2007;28:785-92. 57. Gladwin TE, de Jong R. Bursts of occipital theta and alpha amplitude preceding alternation and repetition trials in a task-switching experiment. Biol Psychol. 2005;68:309-29. 58. Sauseng P, Klimesch W, Freunberger R, Pecherstorfer T, Hanslmayr S, Doppelmayr M. Relevance of EEG alpha and theta oscillations during task switching. Exp Brain Res. 2006;170:295-301. 59. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol. 2006;95:3844-51. 60. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842-57. 61. Klimesch W. alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16:606-17. 62. Huang CY, Chen YA, Hwang IS, Wu RM. Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease. Arch Phys Med Rehabil. 2018;99:1540-6.e2. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73785 | - |
dc.description.abstract | 研究背景與目的: 姿勢-上姿勢雙重作業之定義為執行一個姿勢作業時,同時執行另一項任務(上姿勢作業)。適當的注意力資源分配是雙重作業執行之關鍵。巴金森氏症患者因注意力資源不足與動作自動化能力下降,造成雙重作業表現不佳。近期研究指出,使用適當的作業優先性可促進巴金森氏症患者雙重作業表現。但目前仍無研究探討使用不同作業優先性,對於雙重作業訓練的影響。此外,重心轉移能力缺損亦是巴金森氏症患者平衡不佳的重要原因,但重心轉移尚未被結合至雙重作業訓練。本篇研究目的為探討作業優先性(姿勢優先、上姿勢優先)對巴金森氏症患者於雙重作業重心轉移訓練之影響,其學習效果將由行為表現與大腦活動改變進行探討。
研究方法: 本研究共招募28位巴金森氏症患者,受試者們隨機分配至姿勢作業優先組(14人)和上姿勢作業優先組(14人),進行雙重作業訓練。訓練時,姿勢作業優先組將主要的注意力配置於重心轉移(姿勢作業);而上姿勢作業優先組則將主要的注意力配置於托盤旋轉動作(上姿勢作業)。本訓練為一次性訓練,受試者須進行六回合、每回合六次的雙重作業練習。評估的時間點分別為訓練前測、立即後測、二天後之延遲測試、三週後之延遲測試。評估項目包含雙重作業行為表現、功能前伸與側伸測試(包含往前、往症狀較嚴重側、往症狀較輕微側)、腦電圖參數。 研究結果:經雙重作業重心轉移訓練後,姿勢優先組與上姿勢優先組在重心轉移與托盤旋轉精準度均有進步,且此進步情況可持續至三週後之延遲測試。特別的是,於重心轉移精準度上,姿勢優先組在訓練後的立即後測比起上姿勢優先組有更多的進步量;然而,雖然上姿勢優先組在訓練後的立即後測進步量較少,但在二週後的延遲測試時,比起立即後測、二天後之延遲測試有更佳的精準度。功能前伸測試中,在側伸向症狀較嚴重邊的表現於兩組都有顯著進步。而大腦活動結果顯示,相較於前測,兩組的alpha頻帶強度有均有顯著上升;此外,上姿勢優先組在兩次延遲後測時比起姿勢優先組,均有較大的theta頻帶強度。 結論與重要性: 本篇研究藉由神經電生理、行為數據來瞭解作業優先性對於雙重作業訓練的影響。其結果發現一天性的雙重作業種新轉移訓練,其訓練效果可持續至三週後,此外,使用上姿勢優先學習策略,有較佳的延遲進步效果。本實驗除了是首篇結合重心轉移與雙重作業訓練之研究,其結果也可提供臨床巴金森氏症患者雙重作業訓練指引。 | zh_TW |
dc.description.abstract | Background and Purpose: The postural-suprapostural dual task is defined as performing a postural task with an additional task (suprapostural task). Appropriate resource allocation is one of the critical factors for dual-task control. Due to insufficient resource capacity and impaired motor automaticity, patients with Parkinson’s disease (PD) have more dual-task interference than the healthy population. Recently, studies have shown performing the postural-suprapostural task with proper task prioritization can enhance the performances under dual-task contexts. However, how task prioritization affects dual-task training has not been investigated. In addition, weight-shifting has not been acted as the postural component of dual-task training paradigms. The purpose of this study is to investigate the effect of task prioritization on dual-task weigh shifting training in PD.
Methods: Twenty-eight subjects with idiopathic PD were recruited and randomly assigned to the postural-focus (PF) or suprapostural-focus (SF) dual-task training groups. There were 14 participants in the PF group, and 14 participants in the SF group. During training, the PF group has to focus on weight-shifting (postural task); and the SF group has to focus on a tray-rotating movement (suprapostural task). Dual-task behavioral performances (postural error and suprapostural error), distance of functional reach tests (forward reach and lateral reach) and brain activities recorded by electroencephalogram were recorded in pre-test, immediate post-test, 2-days retention test and 3-weeks retention test. Results: After dual-task weight-shifting training, both postural error and suprapostural error decreased in the PF and SF groups. Although the PF group had smaller postural error than the SF group at immediate post-test, the postural error of SF group decreased at 3-weeks retention test relative to immediate post-test and 2-days retention test. The distance of functional reach toward more affected side increased in both groups. For brain activity, increased alpha power was observed at immediate post-test in both groups. In addition, the SF group had greater theta power at 2-days retention test and 3-weeks retention test than the PF group. Conclusion and Significance: This study was the first study to integrate weight-shifting in dual-task training in PD. In addition, this study provided neurophysiological and behavioral evidence of the interaction between task prioritization and dual-task training. With SF learning strategy, patients with PD had better delayed gains in postural learning relative to PF learning strategy. Based on study results, we could provide appropriate guidance of dual-task training for PD in clinic. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:12Z (GMT). No. of bitstreams: 1 ntu-108-R06428013-1.pdf: 3040902 bytes, checksum: eb5e6be5ed6fb645877b101a50531f23 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 III
Abstract V List of abbreviation XI List of figures XII List of tables XIV Chapter 1. Introduction 1 1.1 Overview of weight-shifting and dual-task interference in Parkinson’s disease 1 1.2 Related literature 2 1.2.1 Weight-shifting impairments in PD 2 1.2.2 Weight-shifting training in PD 3 1.2.3 Dual-task deficits and training in PD 4 1.2.4 Limitations of weight-shifting and dual-task training in PD 6 1.3 Purpose and significance 10 1.4 Hypothesis 10 Chapter 2. Method 12 2.1 Subjects 12 2.2 Experimental procedures and conditions 12 2.2.1 Postural & suprapostural tasks 12 2.2.2 Study procedure 13 2.3 System set-up and data recording 15 2.4 Data analysis 16 2.4.1 Behavioral data 16 2.4.2 Brain activity data 16 2.5 Statistical analysis 17 Chapter 3. Results 19 3.1 Behavioral performance 19 3.1.1 Postural error and suprapostural error 19 3.1.2 Distances of FRT in forward direction, and FRT toward more and less affected side 20 3.2 Brain activity 21 Chapter 4. Discussion 23 4.1 Learning effects of postural task and related brain activities 24 4.2 Learning effects of suprapostural task and related brain activities 26 4.3 Improvements in FRT toward more affected side 27 4.4 Study limitations 27 Chapter 5. Conclusion 29 References 30 Figures 35 Tables 50 Appendices 53 | |
dc.language.iso | en | |
dc.title | 作業優先性對巴金森氏症患者於雙重作業重心轉移訓練之影響 | zh_TW |
dc.title | The Effect of Task Prioritization on Dual-Task
Weight-shifting Training in Parkinson’s Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳瑞美(Ruey-Meei Wu),李亞芸(Ya-Yun Lee),周立偉(Li-Wei Chou) | |
dc.subject.keyword | 作業優先性,重心轉移,雙重作業訓練,腦電圖, | zh_TW |
dc.subject.keyword | task prioritization,weight-shifting,dual-task training,electroencephalogram, | en |
dc.relation.page | 62 | |
dc.identifier.doi | 10.6342/NTU201903898 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
Appears in Collections: | 物理治療學系所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 2.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.