請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73773
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
dc.contributor.author | Soumyajit Balabantaray | en |
dc.contributor.author | 巴書米 | zh_TW |
dc.date.accessioned | 2021-06-17T08:09:54Z | - |
dc.date.available | 2019-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | 1. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
2. Gonzalez, C.F. and V.T.J.J.o.C.A. Remcho, Harnessing dielectric forces for separations of cells, fine particles and macromolecules. 2005. 1079(1-2): p. 59-68. 3. Voldman, J., Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng, 2006. 8: p. 425-54. 4. Wang, L., et al., Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. 2007. 7(9): p. 1114-1120. 5. Lenshof, A. and T.J.C.S.R. Laurell, Continuous separation of cells and particles in microfluidic systems. 2010. 39(3): p. 1203-1217. 6. Dittrich, P.S. and P.J.A.c. Schwille, An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. 2003. 75(21): p. 5767-5774. 7. Fu, A.Y., et al., A microfabricated fluorescence-activated cell sorter. 1999. 17(11): p. 1109. 8. Ward, M., et al., Fundamentals of acoustic cytometry. 2009. 49(1): p. 1.22. 1-1.22. 12. 9. Kaduchak, G. and M.D. Ward. Application of acoustic radiation pressure to align cells in a commercial flow cytometer. in Proceedings of Meetings on Acoustics ICA2013. 2013. ASA. 10. Cho, S.H., et al., Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). 2010. 10(12): p. 1567-1573. 11. Ding, X., et al., Surface acoustic wave microfluidics. 2013. 13(18): p. 3626-3649. 12. Neuman, K.C. and A.J.N.m. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. 2008. 5(6): p. 491. 13. Krüger, J., et al., Development of a microfluidic device for fluorescence activated cell sorting. 2002. 12(4): p. 486. 14. Zborowski, M. and J.J. Chalmers, Rare cell separation and analysis by magnetic sorting. 2011, ACS Publications. 15. Gao, Y., et al., Magnetophoresis of nonmagnetic particles in ferrofluids. 2007. 111(29): p. 10785-10791. 16. Oakey, J., et al., Particle focusing in staged inertial microfluidic devices for flow cytometry. 2010. 82(9): p. 3862-3867. 17. Kuntaegowdanahalli, S.S., et al., Inertial microfluidics for continuous particle separation in spiral microchannels. 2009. 9(20): p. 2973-2980. 18. Huang, L.R., et al., Continuous particle separation through deterministic lateral displacement. 2004. 304(5673): p. 987-990. 19. Choi, S., et al., Continuous blood cell separation by hydrophoretic filtration. 2007. 7(11): p. 1532-1538. 20. Mohamed, H., J.N. Turner, and M.J.J.o.C.A. Caggana, Biochip for separating fetal cells from maternal circulation. 2007. 1162(2): p. 187-192. 21. Chen, X., et al., Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. 2007. 584(2): p. 237-243. 22. Yamada, M. and M.J.L.o.a.C. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. 2005. 5(11): p. 1233-1239. 23. Yamada, M., et al., Microfluidic devices for size-dependent separation of liver cells. 2007. 9(5): p. 637-645. 24. Yamada, M., M. Nakashima, and M.J.A.c. Seki, Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. 2004. 76(18): p. 5465-5471. 25. Takagi, J., et al., Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab on a Chip, 2005. 5(7): p. 778-784. 26. Breslauer, D.N., et al., Mobile phone based clinical microscopy for global health applications. 2009. 4(7): p. e6320. 27. Gurkan, U.A., et al., Miniaturized lensless imaging systems for cell and microorganism visualization in point‐of‐care testing. 2011. 6(2): p. 138-149. 28. Yasuda, K., et al., Non-destructive on-chip imaging flow cell-sorting system for on-chip cellomics. 2013. 14(6): p. 907-931. 29. Karunakaran, B., et al., Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control. 2018. 23(2): p. 025002. 30. Nitta, N., et al., Intelligent image-activated cell sorting. 2018. 175(1): p. 266-276. 31. Gӧrӧcs, Z., et al., A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. 2018. 7(1): p. 66. 32. Heo, Y.J., et al., Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip. 2017. 7(1): p. 11651. 33. Lempitsky, V. and A. Zisserman. Learning to count objects in images. in Advances in neural information processing systems. 2010. 34. Xie, W., et al., Microscopy cell counting and detection with fully convolutional regression networks. 2018. 6(3): p. 283-292. 35. Lake, J.R., K.C. Heyde, and W.C.J.P.o. Ruder, Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. 2017. 12(4): p. e0175089. 36. Garcia, V.E., J. Liu, and J.L.J.H. DeRisi, Low-cost touchscreen driven programmable dual syringe pump for life science applications. 2018. 4: p. e00027. 37. Wijnen, B., et al., Open-source syringe pump library. 2014. 9(9): p. e107216. 38. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer. 39. Cybulski, J.S., J. Clements, and M.J.P.o. Prakash, Foldscope: origami-based paper microscope. 2014. 9(6): p. e98781. 41. Implementation of deep learning framework -Unet, using Keras, https://github.com/zhixuhao/unet 42. A portable Opto-fluidic system for particle separation and quantification using pinched flow fractionation and vision-based object tracking, https://github.com/ssoumyajit/project_bubble_cellsorting/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73773 | - |
dc.description.abstract | 在臨床上,從複雜檢體中分離白血球細胞、循環腫瘤細胞與聚合物等生物分子,具有重大意義。例如,白血球細胞的計數為數百種疾病的診斷、篩查及治療手段的評估提供參考。微流體系統可以藉由微米尺度的流體通道處理微量液體。目前用於微粒分離的微流體晶片,已經可以操控、分離微粒,但大多依賴外部的電場或磁場、多孔濾膜,後者還會有產生孔隙阻塞、吸附效應等問題。此外,微流體晶片的運轉需要高成本的送流系統和搭配顯微鏡使用,限制了微流體晶片本身的應用。為了發展精確、低成本的微流體晶片微粒分離技術及應用,本研究提出基於擠壓流體分離技術的可攜帶式光學微流體系統,採用較低成本的微量注射幫 浦、智慧型手機照相機,實現微粒分離與計數。本研究藉由在兩幅連續影像中識別同一微粒的方法,實現基於影像的粒子追蹤。本研究還採用基於編解碼器的卷積神經網路在粒子追蹤之前先對原始影像進行去雜訊處理。目前,智慧型手機已經非常普及,因此,低成本微流體晶片的開發對未來定點照護檢驗等情境的應用意義非凡。 | zh_TW |
dc.description.abstract | Separation of biomolecules like WBCs (white blood cells), CTCs (circulating tumor cells), polymers from complex samples have extensive clinical significance. For example, WBC count provides implications for the diagnosis and screening of hundreds of diseases and treatments. Microfluidics is the study of systems that can process small quantities of fluids by using tiny channels having dimensions at the microscale. Several microfluidic chip based particle sorting solutions have been provided which manipulate the particle movement inside micro channels to separate them, however many of these techniques require external electrical or magnetic fields, porous membrane filters which raise clogging and fouling effect. If not the above problems, almost every microfluidic device needs bulky expensive pumping system and lab microscopes which limit the use of these valuable microfluidic design solutions in the lab itself. Now the question is, can we find a cost effective and accurate alternative to lab grade microscope and syringe pump to combine with a simple microfluidic design to do cell sorting? A portable opto-fluidic system for particle separation and quantification is proposed which uses a novel microfluidic design called “pinched flow fractionation” along with a smart phone camera and low cost syringe pump to address this issue. It uses vision based particle tracking by defining an identity mapping between corresponding particles of two consecutive frames. An encoder-decoder based convolutional neural network is used to do pixel wise semantic segmentation which generates completely noise free output images essentially required for above identity mapping and further image processing pipeline. Since smart phones are ubiquitous now, this solution provides a possibility for an automated point of care disease diagnosis tool. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:09:54Z (GMT). No. of bitstreams: 1 ntu-108-R05548060-1.pdf: 3540649 bytes, checksum: 4d8cca55fb7d47bdd4545d6fd77d38ce (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Table of Contents
Aknowledgement i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 4 Chapter 2 Literature review 7 2.1 Microfluidics 7 2.1.1 particle sorting and separation 7 2.1.2 pinched flow fractionation (PFF) 17 2.2 Smart phone based healthcare solutions 19 2.2.1 Smart phone as instrumental interface 19 2.2.2 Smartphone as biosensors 20 2.2.3 Smart phone as a detector 20 2.2.4 Example 1: foldscope, origami based paper 21 2.2.5 Example 2: Mobile phone based clinical microscopy 23 2.3 Imaging in cell cytometry 24 2.3.1 deep learning for particle detection 25 2.3.2 A discussion on available literature on deep learning for image cytometry 27 2.3.3 Convolutional neural network and encoder-decoder based architecture 29 2.4 Low cost syringe pump 30 Chapter 3 Materials and Methods 34 3.1 Fabrication of microfluidic chip 34 3.1.1 Why PDMS 34 3.1.2 Photomask design 34 3.1.3 Pouring and degassing the PDMS: 35 3.1.4 Peeling and cutting out microfluidic chips: 35 3.1.5 Bonding a microfluidic device to a glass substrate by oxygen-plasma treatment: 36 3.2 Optical set up 37 3.3 The entire experimental set-up 40 3.4 Pixel wise segmentation 43 3.4.1 Data preparation and training 48 3.5 Identity mapping of particles within consecutive frames and tracking algorithm 49 3.5.1 Discussion on the algorithm 53 3.5.2 Particle Tracking algorithm 54 Chapter 4 Results and Discussion 60 4.1 Data preparation results 60 4.2 Model training results 62 4.3 Comparison of image processing outputs (conventional vs ML model) 65 4.5 Results of particle tracking algorithm 73 Chapter 5 Future Work 76 Chapter 6 APPENDICES 77 6.1 CODE 1 77 6.2 CODE 2 79 6.3 CODE 3 82 6.4 CODE 4 83 6.5 CODE 5 85 6.6 CODE 6 86 REFERENCE 88 | |
dc.language.iso | en | |
dc.title | 以擠壓流場和基於視覺的物體追蹤實現可攜式光學流道系統用於微粒分離與定量 | zh_TW |
dc.title | A portable Opto-fluidic system for particle separation and
quantification using pinched flow fractionation and vision-based object tracking | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許永真(Yung-Jen Hsu),林致廷(Chih-Ting Lin) | |
dc.subject.keyword | 定點照護檢驗,微流體,深度學習,物體識別,影像分析,智慧型手機,顯微術, | zh_TW |
dc.subject.keyword | point-of-care (POC),microfluidics,deep learning,object detection,video analysis,smart phone,microscopy, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201903678 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。