Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73769
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李岳聯(Yueh-Lieh Lee)
dc.contributor.authorYi-Sheng Luen
dc.contributor.author盧易聖zh_TW
dc.date.accessioned2021-06-17T08:09:49Z-
dc.date.available2025-08-01
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation[1] D.-H. Lee, M.-Y. Seok, Y. Zhao, I.-C. Choi, J. He, Z. Lu, J.-Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, J.-i. Jang, Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta Materialia, 109 (2016) 314-322.
[2] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755.
[3] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, 345 (2014) 1153-1158. [4] Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science, 396 (2017) 1420-1426.
[5] H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corrosion Science, 134 (2018) 131-139.
[6] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual- phase alloys overcome the strength–ductility trade-off, Nature, 534 (2016) 227.
[7] K. Asami, K. Hashimoto, S. Shimodaira, An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid, Corrosion Science, 18 (1978) 151-160.
[8] C.S. Smith, Four outstanding researches in metallurgical history, (1963).
[9] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Cham: Springer International Publishing, (2016).
[10] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375-377 (2004) 213-218.
[11] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 698-706.
[12] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Materials Science and Engineering: A, 529 (2011) 311-320. [13] O.N. Senkov, S.V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia, 68 (2014) 214-228.
[14] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y.J.C.S.I.P. Zhang, High-entropy alloys, (2016).
[15] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press, 2017.
[16] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, 6 (2004) 299-303.
[17] Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Materials & Design, 83 (2015) 651-660.
[18] C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature, Journal of Alloys and Compounds, 489 (2010) 30-35.
[19] J.-W.J.J. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, 65 (2013) 1759-1771.
[20] High-entropy alloys : fundamentals and applications, Springer International Publishing, Cham, 2016.
[21] B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys, Elsevier Science, 2019.
[22] P. Gordon, Principles of phase diagrams in materials systems, McGraw-Hill, 1968.
[23] J.-W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Materiaux (Paris), 31 (2006) 633-648.
[24] Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Scientific reports, 3 (2013) 1455- 1455.
[25] Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity, Acta Materialia, 136 (2017) 262-270.
[26] Y.F. Shen, X.X. Dong, X.T. Song, N. Jia, Carbon content-tuned martensite transformation in low-alloy TRIP steels, Scientific Reports, 9 (2019) 7559.
[27] S. Basu, Z. Li, K.G. Pradeep, D. Raabe, Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy, Frontiers in Materials Structural Materials, 5 (2018) 1-10.
[28] Y.P. Wang, B.S. Li, H.Z. Fu, Solid Solution or Intermetallics in a High-Entropy Alloy, 11 (2009) 641-644.
[29] K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, D. Raabe, Non- equiatomic high entropy alloys: Approach towards rapid alloy screening and property- oriented design, Materials Science and Engineering: A, 648 (2015) 183-192.
[30] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Materialia, 94 (2015) 124-133.
[31] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Materialia, 131 (2017) 323-335.
[32] S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, D. Raabe, Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy, Scientific Reports, 7 (2017) 16167.
[33] M. Wang, Z. Li, D. Raabe, In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy, Acta Materialia, 147 (2018) 236-246.
[34] E. McCafferty, Introduction to corrosion science, Springer Science & Business Media, 2010.
[35] D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, 1996.
[36] N. Perez, Electrochemistry and Corrosion Science, Springer International Publishing, 2016.
[37] H.H. Uhlig, Passivity in metals and alloys, Corrosion Science, 19 (1979) 777-791.
[38] L. Tronstad, C.W. Borgmann, Some optical observations on the passivity of iron and steel in nitric and chromic acids, Transactions of the Faraday Society, 30 (1934) 349-361.
[39] C.Y. Chao, L.F. Lin, D.D. Macdonald, A point defect model for anodic passive films I. Film growth kinetics, Journal of The Electrochemical Society, 128 (1981) 1187-1194.
[40] L.F. Lin, C.Y. Chao, D. Macdonald, A point defect model for anodic passive films II. Chemical breakdown and pit initiation, Journal of the Electrochemical Society, 128 (1981) 1194-1198.
[41] C.Y. Chao, L.F. Lin, D.D. Macdonald, A point defect model for anodic passive films III. Impedance response, Journal of The Electrochemical Society, 129 (1982) 1874-1879.
[42] D.D. Macdonald, The history of the Point Defect Model for the passive state: A brief review of film growth aspects, Electrochimica Acta, 56 (2011) 1761-1772.
[43] D.D. Macdonald, M. Urquidi‐Macdonald, Theory of Steady‐State Passive Films, Journal of The Electrochemical Society, 137 (1990) 2395-2402.
[44] C.O.A. Olsson, D. Hamm, D. Landolt, Evaluation of Passive Film Growth Models with the Electrochemical Quartz Crystal Microbalance on PVD Deposited Cr, Journal of The Electrochemical Society, 147 (2000) 4093-4102.
[45] R. Kirchheim, Growth kinetics of passive films, Electrochimica Acta, 32 (1987) 1619-1629.
[46] P. Marcus, Corrosion mechanisms in theory and practice, CRC press, 2011.
[47] B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, M.X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system, Journal of Alloys and Compounds, 493 (2010) 148-153.
[48] B. Ren, Z.X. Liu, B. Cai, M.X. Wang, L. Shi, Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Materials & Design, 33 (2012) 121-126.
[49] B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, M.X. Wang, Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution, Materials and Corrosion, 63 (2012) 828-834.
[50] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid, Thin Solid Films, 517 (2008) 1301-1305.
[51] Y.-F. Kao, T.-D. Lee, S.-K. Chen, Y.-S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corrosion Science, 52 (2010) 1026-1034.
[52] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiB x, Journal of The Electrochemical Society, 154 (2007) C424-C430.
[53] X.W. Qiu, Y.P. Zhang, C.G. Liu, Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings, Journal of Alloys and Compounds, 585 (2014) 282-286.
[54] C.D. Taylor, P. Lu, J. Saal, G.S. Frankel, J.R. Scully, Integrated computational materials engineering of corrosion resistant alloys, npj Materials Degradation, 2 (2018) 6.
[55] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153-1158.
[56] Y. Zhao, D.-H. Lee, M.-Y. Seok, J.-A. Lee, M.P. Phaniraj, J.-Y. Suh, H.-Y. Ha, J.-Y. Kim, U. Ramamurty, J.-i. Jang, Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement, Scripta Materialia, 135 (2017) 54-58.
[57] H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Hydrogen embrittlement of an interstitial equimolar high-entropy alloy, Corrosion Science, 136 (2018) 403-408.
[58] H. Luo, Z. Li, D. Raabe, Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy, Scientific Reports, 7 (2017) 9892.
[59] B.C. Maji, C.M. Das, M. Krishnan, R.K. Ray, The corrosion behaviour of Fe–15Mn–7Si–9Cr–5Ni shape memory alloy, Corrosion Science, 48 (2006) 937-949.
[60] C.A.D. Rovere, J.H. Alano, J. Otubo, S.E. Kuri, Corrosion behavior of shape memory stainless steel in acid media, Journal of Alloys and Compounds, 509 (2011) 5376-5380.
[61] C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Characterization of passive films on shape memory stainless steels, Corrosion Science, 57 (2012) 154-161.
[62] C.A.D. Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Influence of alloying elements on the corrosion properties of shape memory stainless steels, Materials Chemistry and Physics, 133 (2012) 668-673.
[63] L. Jc, L. XX, Q. Jiang, Shape memory effects in an Fe14Mn6Si9Cr5Ni alloy for joining pipe, ISIJ international, 40 (2000) 1124-1126.
[64] K. Ichii, M. Koyama, C.C. Tasan, K. Tsuzaki, Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys, Scripta Materialia, 150 (2018) 74-77.
[65] K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions, Acta Materialia, 164 (2019) 362-376.
[66] K. Oh, S. Ahn, K. Eom, K. Jung, H. Kwon, Observation of passive films on Fe–20Cr–xNi (x=0, 10, 20wt.%) alloys using TEM and Cs-corrected STEM–EELS, Corrosion Science, 79 (2014) 34-40.
[67] K. Jung, S. Ahn, Y. Kim, S. Oh, W.-H. Ryu, H. Kwon, Alloy design employing high Cr concentrations for Mo-free stainless steels with enhanced corrosion resistance, Corrosion Science, 140 (2018) 61-72.
[68] M. Schaffer, B. Schaffer, Q. Ramasse, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy, 114 (2012) 62-71.
[69] R.P. Gunawardane, C.R. Arumainayagam, AUGER ELECTRON SPECTROSCOPY, in: D.R. Vij (Ed.) Handbook of Applied Solid State Spectroscopy, Springer US, Boston, MA, 2006, pp. 451-483.
[70] H.-L. Lee, N.T. Flynn, X-RAY PHOTOELECTRON SPECTROSCOPY, in: D.R. Vij (Ed.) Handbook of Applied Solid State Spectroscopy, Springer US, Boston, MA, 2006, pp. 485-507.
[71] R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, The passivity of iron-chromium alloys, Corrosion Science, 29 (1989) 899-917.
[72] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52 (2010) 2571-2581.
[73] R.F. Steigerwald, N.D. Greene, The Anodic Dissolution of Binary Alloys, Journal of The Electrochemical Society, 109 (1962) 1026-1034.
[74] K. Osozawa, H.J. Engell, The anodic polarization curves of iron-nickel-chromium alloys, Corrosion Science, 6 (1966) 389-393.
[75] S. Haupt, H.H. Strehblow, A combined surface analytical and electrochemical study of the formation of passive layers on FeCr alloys in 0.5 M H2SO4, Corrosion Science, 37 (1995) 43-54.
[76] C.-H. Tsau, P.-Y. Lee, Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions, Entropy, 18 (2016) 288.
[77] H. Pulkkinen, H. Apajalahti, S. Papula, J. Talonen, H. Hänninen, Pitting Corrosion Resistance of Mn-Alloyed Austenitic Stainless Steels, steel research international, 85 (2014) 324-335.
[78] S. Nijjer, J. Thonstad, G.M. Haarberg, Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid, Electrochimica Acta, 46 (2000) 395-399.
[79] C.J. Clarke, G.J. Browning, S.W. Donne, An RDE and RRDE study into the electrodeposition of manganese dioxide, Electrochimica Acta, 51 (2006) 5773-5784.
[80] N. Larabi-Gruet, S. Peulon, A. Lacroix, A. Chaussé, Studies of electrodeposition from Mn(II) species of thin layers of birnessite onto transparent semiconductor, Electrochimica Acta, 53 (2008) 7281-7287.
[81] C. Zhang, N. Duan, L. Jiang, F. Xu, J. Luo, Influence of Mn2+ ions on the corrosion mechanism of lead-based anodes and the generation of heavy metal anode slime in zinc sulfate electrolyte, Environmental Science and Pollution Research, 25 (2018) 11958-11969.
[82] B.E. WILDE, J.S. ARMIJO, Influence of Silicon and Manganese on Corrosion Behavior of Austenitic Stainless Steels, CORROSION, 24 (1968) 393-402.
[83] M. Kemp, A. van Bennekom, F.P.A. Robinson, Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels, Materials Science and Engineering: A, 199 (1995) 183-194.
[84] V. Shankar Rao, L.K. Singhal, Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid, Journal of Materials Science, 44 (2009) 2327-2333.
[85] M. Lakatos-Varsányi, F. Falkenberg, I. Olefjord, The influence of phosphate on repassivation of 304 stainless steel in neutral chloride solution, Electrochimica Acta, 43 (1998) 187-197.
[86] D.A. JONES, N.D. GREENE, Electrochemical Measurement of Low Corrosion Rates, CORROSION, 22 (1966) 198-205.
[87] Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH, Corrosion Science, 150 (2019) 218-234.
[88] J.R. Galvele, R.M. Torresi, R.M. Carranza, Passivity breakdown, its relation to pitting and stress-corrosion-cracking processes, Corrosion Science, 31 (1990) 563-571.
[89] Y. Gui, Z.J. Zheng, Y. Gao, The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel, Thin Solid Films, 599 (2016) 64-71.
[90] X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting, Corrosion Science, 145 (2018) 80-89.
[91] G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176 (1984) 275-295.
[92] F.B. Growcock, R.J. Jasinski, Time‐Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid, Journal of The Electrochemical Society, 136 (1989) 2310-2314.
[93] K. Jüttner, Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces, Electrochimica Acta, 35 (1990) 1501-1508.
[94] Y. Kim, S. Oh, S. Ahn, K. Oh, K. Jung, H. Kwon, Electrochemical analysis on the potential decay behavior of Fe-20Cr stainless steels in sulfuric acid solution, Electrochimica Acta, 266 (2018) 1-6.
[95] A. Fattah-alhosseini, S. Vafaeian, Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution, Applied Surface Science, 360 (2016) 921-928.
[96] D.D. Macdonald, On the tenuous nature of passivity and its role in the isolation of HLNW, Journal of Nuclear Materials, 379 (2008) 24-32.
[97] H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochimica Acta, 52 (2007) 3785-3793.
[98] R. De Gryse, W.P. Gomes, F. Cardon, J. Vennik, On the Interpretation of Mott‐Schottky Plots Determined at Semiconductor/Electrolyte Systems, Journal of The Electrochemical Society, 122 (1975) 711-712.
[99] A.M.P. Simões, M.G.S. Ferreira, B. Rondot, M. da Cunha Belo, Study of Passive Films Formed on AISI 304 Stainless Steel by Impedance Measurements and Photoelectrochemistry, Journal of The Electrochemical Society, 137 (1990) 82-87.
[100] S.J. Ahn, H.S. Kwon, Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution, Electrochimica Acta, 49 (2004) 3347-3353.
[101] A. Fattah-alhosseini, M.A. Golozar, A. Saatchi, K. Raeissi, Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels, Corrosion Science, 52 (2010) 205-209.
[102] A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM), Corrosion Science, 53 (2011) 3186-3192.
[103] N.E. Hakiki, M. Da Cunha Belo, A.M.P. Simões, M.G.S. Ferreira, Semiconducting Properties of Passive Films Formed on Stainless Steels: Influence of the Alloying Elements, Journal of The Electrochemical Society, 145 (1998) 3821-3829.
[104] A. Fattah-alhosseini, S. Vafaeian, Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott–Schottky analysis and EIS measurements, Journal of Alloys and Compounds, 639 (2015) 301-307.
[105] E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukuda, S. Ishikawa, T. Ujiro, Direct imaging of native passive film on stainless steel by aberration corrected STEM, Corrosion Science, 52 (2010) 3851-3854.
[106] M. Kumagai, S.-T. Myung, H. Yashiro, Y. Katada, Direct observation of the passive layer on high nitrogen stainless steel used as bipolar plates for proton exchange membrane fuel cells, Journal of Power Sources, 210 (2012) 92-95.
[107] X. Li, Y. Zhao, W. Qi, J. Xie, J. Wang, B. Liu, G. Zeng, T. Zhang, F. Wang, Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel, Applied Surface Science, 469 (2019) 146-161.
[108] D.B. Williams, C.B. Carter, Transmission electron microscopy a textbook for materials science, 2nd ed. ed., Springer US, Boston, MA, 2009.
[109] B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, D. Chen, Y.C. Zhang, K. Du, E.E. Oguzie, X.L. Ma, Unmasking chloride attack on the passive film of metals, Nature Communications, 9 (2018) 2559.
[110] J.E. Castle, J.H. Qiu, The Application of ICP‐MS and XPS to Studies of Ion Selectivity during Passivation of Stainless Steels, Journal of The Electrochemical Society, 137 (1990) 2031-2038.
[111] V. Maurice, W.P. Yang, P. Marcus, X‐Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe‐18Cr‐13Ni Single‐Crystal Surfaces, Journal of The Electrochemical Society, 145 (1998) 909-920.
[112] V. Vignal, H. Krawiec, O. Heintz, D. Mainy, Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spectroscopy, Corrosion Science, 67 (2013) 109-117.
[113] H. Luo, C. Dong, K. Xiao, X. Li, The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media, RSC Advances, 6 (2016) 9940-9949.
[114] S. Mischler, A. Vogel, H.J. Mathieu, D. Landolt, The chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, XPS and SIMS, Corrosion Science, 32 (1991) 925-944.
[115] G. Bellanger, J.J.J.J.o.M.S. Rameau, Behaviour of Hastelloy C22 steel in sulphate solutions at pH 3 and low temperatures, 31 (1996) 2097-2108.
[116] S. Haupt, C. Calinski, U. Collisi, H.W. Hoppe, H.-D. Speckmann, H.-H. Strehblow, XPS and ISS examinations of electrode surfaces and passive layers with a specimen transfer in a closed system, 9 (1986) 357-365.
[117] C.O.A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochimica Acta, 48 (2003) 1093-1104.
[118] L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study, Electrochimica Acta, 55 (2010) 6174-6181.
[119] A.M. Human, B. Roebuck, H.E. Exner, Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid, Materials Science and Engineering: A, 241 (1998) 202-210.
[120] Y.S. Zhang, X.M. Zhu, Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions, Corrosion Science, 41 (1999) 1817-1833.
[121] C.M. Abreu, M.J. Cristóbal, R. Losada, X.R. Nóvoa, G. Pena, M.C. Pérez, Comparative study of passive films of different stainless steels developed on alkaline medium, Electrochimica Acta, 49 (2004) 3049-3056.
[122] H. Luo, S. Gao, C. Dong, X. Li, Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution, Electrochimica Acta, 135 (2014) 412-419.
[123] L.Q. Guo, S.X. Qin, B.J. Yang, D. Liang, L.J. Qiao, Effect of hydrogen on semiconductive properties of passive film on ferrite and austenite phases in a duplex stainless steel, Scientific Reports, 7 (2017) 3317.
[124] Y. Zhang, M. Urquidi-Macdonald, G.R. Engelhardt, D.D. Macdonald, Development of localized corrosion damage on low pressure turbine disks and blades: I. Passivity, Electrochimica Acta, 69 (2012) 1-11.
[125] J. Amri, T. Souier, B. Malki, B. Baroux, Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films, Corrosion Science, 50 (2008) 431-435.
[126] M.J. Carmezim, A.M. Simões, M.O. Figueiredo, M. Da Cunha Belo, Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel, Corrosion Science, 44 (2002) 451-465.
[127] G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, A.M.P. Simões, M.G.S. Ferreira, M. Da Cunha Belo, The electronic properties of sputtered chromium and iron oxide films, Corrosion Science, 46 (2004) 1479-1499.
[128] Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Electrochemical behaviour of high nitrogen stainless steel in acidic solutions, Corrosion Science, 51 (2009) 979-986.
[129] G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, Effect of Cl− on the Properties of the Passive Films Formed on 316L Stainless Steel in Acidic Solution, Journal of Materials Science & Technology, 30 (2014) 253-258.
[130] M.M. Najafpour, M. Kompany-Zareh, A. Zahraei, D. Jafarian Sedigh, H. Jaccard, M. Khoshkam, R.D. Britt, W.H. Casey, Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights, Dalton Transactions, 42 (2013) 14603-14611.
[131] M. Huynh, D.K. Bediako, D.G. Nocera, A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid, Journal of the American Chemical Society, 136 (2014) 6002-6010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73769-
dc.description.abstract高熵合金設計基於「雞尾酒效應」,將每種元素能提供的特性同時兼併合於同一合金。雖然過去研究強調高熵合金傾向形成單相,但僅限於理想狀況才能擁有最 高混合熵,進而形成單相合金。Fe50Mn30Co10Cr10 中熵合金為近年提出之新穎熵合 金,其仰賴「相變誘導塑性 (Transformation induced plasticity, TRIP)」效應而發揮 高強度伴隨高延展性之塑性變形行為,優於傳統的 CoCrFeMnNi 等莫耳高熵合金 之拉伸性質。然而 Fe50Mn30Co10Cr10 擁有優異的機械性能,若期待將其應用於管線或工件中,抗蝕能力評估成了重要環節。本次研究以 0.1M 稀硫酸模擬酸性環境, 在如此嚴苛環境下量測 Fe50Mn30Co10Cr10 及其鈍化膜之電化學行為,並與 CoCrFeMnNi 進行比較,以評估該新穎材料之抗蝕性,並針對鈍化膜分析成分,探 究成分與抗蝕性之關係。
極化曲線顯示在此環境條件下,雖然 Fe50Mn30Co10Cr10 的腐蝕電流密度高於 CoCrFeMnNi,兩者的鈍化電流密度卻無明顯差異,而透過極化過後的表面得知前者整體而言呈現均勻腐蝕,但可看出沿著麻田散體呈現嚴重的溶解效應;而後者呈現粒間腐蝕,又因有少量的介在物嵌在試片中,進而介在物周圍發生伽凡尼腐蝕效應。另外,兩合金在高電位的狀況下,表面有二氧化錳薄膜沈澱導致電流密度再次 下降,發生二次鈍化行為,透過 X 射線光電子能譜分析(XPS)驗證二氧化錳薄膜之 存在。透過恆定電位生長之鈍化膜後,進行該膜之綜合性評估。高解析穿透式電子 顯微鏡(HRTEM)和歐傑電子能譜之縱深剖面分析顯示 Fe50Mn30Co10Cr10 之鈍化膜 略厚於 CoCrFeMnNi,但 CoCrFeMnNi 之鈍化膜有著較優異的穩定性及抗蝕性,從點缺陷模型分析,兩者鈍化膜擁有高密度之點缺陷,但施體參雜濃度較高的 Fe50Mn30Co10Cr10 應證其鈍化膜較不穩定,以上可以歸因於鈍化膜有較高的氧化鉻含量和較低的錳含量,伴隨較佳的抗蝕性。因此本研究認為,在第一次鈍化(低電位)仰賴鉻產生氧化物或氫氧化物造成鈍化行為,然而當電位上升,第二次鈍化行 為必須透過錳形成氧化物或氫氧化物致使電流密度下降,因此錳添加雖不利第一 次鈍化膜的穩定,卻可在高電位發揮極佳的保護作用。
zh_TW
dc.description.abstractThe design of high-entropy alloy is based on the “cocktail effect”, which can yield the alloy with superior properties for the combination of mechanical performance and anti-corrosion resistance because every element can provide their specific natures. Although past studies have emphasized that high-entropy alloys tended to form a single-phase solid solution, they are limited to the ideal case of the maximum mixing entropy. The Fe50Mn30Co10Cr10 medium entropy alloy (MEA) is a novel entropy alloy proposed in recent years, whose plastic deformation behavior revealed high-strength and high- ductility because of “transformation induced plasticity (TRIP)' effect. It was superior to equiatomic CoCrFeMnNi high entropy alloy (HEA). Regarding MEA applied to pipelines or workpieces, it is necessary to establish the corrosion resistance of MEA in acid solutions. In this study, the dilute sulfuric acid with a molarity of 0.1 molars was used to simulate the acidic environment, and then the electrochemical behavior of MEA and its passive film were investigated to evaluate the corrosion resistance of the material, compared with HEA. Finally, the composition of the passive film was characterized and relationship between the composition and corrosion resistance was explored.
The polarization curve showed that MEA had relatively higher corrosion density and lower corrosion potential than HEA, however, they displayed the similar passive current densities. After polarization, the surface of both alloys exhibited intergranular corrosion attacking, especially MEA occurred intense corrosion obviously distinguishable along the ε-martensite plates. Besides, the Galvanic corrosion effect occurred around the inclusions embedded in HEA. On the other hand, under the condition of high potential, the manganese dioxide film precipitated on the surface of both alloys led to the current density decreasing again, which is known as “secondary passivation behavior”. The existence of the MnO2 film was verified by XPS.
After passivation two hours at passive potential, a comprehensive evaluation of the anodic passive films was performed. Both HRTEM and the depth profile of the AES revealed the passive films on MEA is slightly thicker than that on HEA, but the passive films on HEA has higher both stability and corrosion resistance from the result of potential decay, and EIS. High point defects densities of MEA and HEA were carried out through the Mott–Schottky analysis, and MEA with higher doping concentration demonstrated the unstable passive film on the surface. These phenomena were the grounds that passive films had higher chromium oxide content and lower manganese content. Therefore, this study suggests that the first passivation (at low potential) depended on chromium oxides or hydroxides causing passivation behavior. When the potential rose, the second passivation behavior pertained to the generation of manganese oxides or hydroxides to cause current density reducing. In short, addition of manganese is unfavorable to the stability of the first passive film, but it is dominant species of secondary passivation behavior at high working potential.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:09:49Z (GMT). No. of bitstreams: 1
ntu-108-R06525019-1.pdf: 8588445 bytes, checksum: 2f4d9701d6da67dfccfc42870f5b13c7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ...... I
摘要 ...... II
ABSTRACT ...... IV 

TABLE OF CONTENTS ...... VI

LIST OF FIGURES ...... VIII 

LIST OF TABLES ...... XI 

CHAPTER 1 INTRODUCTION ...... 1 

CHAPTER 2 BACKGROUNDS ...... 3 

2.1. The Multi-Principle Elements Alloys ...... 3 
2.1.1. Short History ...... 3 
2.1.2. Definition ...... 4 
2.1.3. Four Core Effects on HEAs ...... 6 
2.1.4. TRIP Effect on Medium Entropy Alloys (MEAs) ...... 9
2.2.Corrosion ...... 13 
2.2.1. Definition ...... 13 
2.2.2. Thermodynamics and Kinetics of Corrosion ...... 13 
2.2.3. Type of Corrosion ...... 21 
2.2.4. Passivity ...... 21 
2.3. Corrosion Behavior of The Multi-Principle Elements Alloys ...... 28 
2.3.1. Corrosion Behavior of HEAs ...... 28 
2.3.2. Corrosion Behavior of MEAs ...... 30 
2.4. Motivation ...... 35 
CHAPTER 3 GENERAL EXPERIMENTAL PROCEDURE ...... 36 
3.1. Experiments Procedure ...... 36 
3.2. Material Preparation ...... 38 
3.3. Microstructure Analysis ...... 40 
3.4. Polarization Measurement ...... 40 
3.5. Passive Film Chartered ...... 42 
3.5.1. Passive Film Growth ...... 42 
3.5.2. Corrosion resistance of Passive Film ...... 42 
3.5.3. Microstructure of Passive Film ...... 43 
3.5.4. Composition of Passive Film ...... 44 
CHAPTER 4 RESULTS ...... 47 
4.1. Microstructure Analysis ...... 47 
4.2. Polarization Analysis ...... 49 
4.3. Evaluation of Passive Film ......54 
4.3.1. Anodic Passive Film Growth ...... 54 
4.3.2. Corrosion Resistance of Anodic Passive Film ...... 55 
4.3.3. Established PDM of Passive Film ...... 58 
4.4. Microstructure and Composition of Passive Film ...... 65 
4.4.1. Microstructure of Passive Film ...... 65 
4.4.2. Composition of Passive Film ...... 67 
CHAPTER 5 DISCUSSION ...... 75 
CHAPTER 6 CONCLUSIONS ...... 80 
REFERENCE ...... 82
dc.language.isoen
dc.titleFe50Mn30Co10Cr10 中熵合金於酸性環境中電化學行為與鈍化膜特徵之研究zh_TW
dc.titleElectrochemical Properties and Passive Film Characterization of Fe50Mn30Co10Cr10 Medium Entropy Alloy in Acid Environmenten
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王星豪(Shing-Hoa Wang),陳士勛(Shih-Hsun Chen),李佳翰(Jia-Han Li)
dc.subject.keyword中熵合金,電化學行為,鈍化膜,抗蝕性,二次鈍化,zh_TW
dc.subject.keywordmedium entropy alloy,electrochemical behavior,passive film,anti-corrosion,secondary passivation behavior,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201903012
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved