請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73768完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明(Ming Ouhyoung) | |
| dc.contributor.author | Tzu-Chieh Chang | en |
| dc.contributor.author | 張子捷 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:09:47Z | - |
| dc.date.available | 2024-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | B. Bitterli and W. Jarosz. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 36(4):1–12, July 2017.
G. Bouchard, J.-C. Iehl, V. Ostromoukhov, and P. Poulin. Improving robustness of monte-carlo global illumination with directional regularization. In SIGGRAPH Asia 2013 Technical Briefs, SA ’13, pages 22:1–22:4. ACM, 2013. X. Deng, S. Jiao, B. Bitterli, and W. Jarosz. Photon surfaces for robust, unbiased volumetric density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 38(4), jul 2019. L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng. Manuka: A batch-shading architecture for spectral path tracing in movie production. ACM Transactions on Graphics, 37(3):31:1–31:18, Aug. 2018. K. X. Fu-Jun Luan, Li-Fan Wu. Anisotropic density estimation for photon mapping. Computational Visual Media, 1(3):221–228, Sep 2015. I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. V. Lommel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant, and M. Fajardo. Arnold: A brute-force production path tracer. ACM Transactions on Graphics, 37(3):32:1–32:12, Aug. 2018. I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 31(6):192:1–192:10, Nov. 2012. T. Hachisuka. Robust Light Transport Simulation Using Progressive Density Estimation. PhD thesis, University of California at San Diego, 2011. AAI3473619. T. Hachisuka and H. W. Jensen. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 28(5):130:1—130:8, Dec. 2009. T. Hachisuka, S. Ogaki, and H. W. Jensen. Progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 27(5):130:1—130:8, Dec. 2008. T. Hachisuka, J. Pantaleoni, and H. W. Jensen. A path space extension for robust light transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 31(6):191:1–191:10, Jan. 2012. V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray maps for global illumination. In RT_EGSR03, pages 43–54, June 2005. V. Havran, R. Herzog, and H.-P. Seidel. Fast final gathering via reverse photon mapping. Computer Graphics Forum, 24(3):323–332, Sept. 2005. R. Herzog. Advanced Density Estimation Techniques for Global Illumination. PhD thesis, Saarland University (MPI Informatik), 2005. R. Herzog, V. Havran, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel. Global illumination using photon ray splatting. Computer Graphics Forum (Proceedings of Eurographics), 26(3):503–513, 2007. H. Hey and W. Purgathofer. Importance sampling with hemispherical particle footprints. In Proceedings of the 18th Spring Conference on Computer Graphics, SCCG’02, pages 107–114. ACM, 2002. H. W. Jensen. Global illumination using photon maps. In W. Hansmann, W. T. Hewitt, W. Purgathofer, X. Pueyo, and P. Schröder, editors, Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), pages 21–30, Vienna, June 1996. Springer-Verlag. H. W. Jensen and N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224, Mar. 1995. H. W. Jensen, F. Suykens, and P. H. Christensen. A practical guide to global illumination using photon mapping. In ACM SIGGRAPH Course Notes. ACM Press, Aug. 2001. J. T. Kajiya. The rendering equation. Computer Graphics (Proceedings of SIGGRAPH), 20(4):143–150, Aug. 1986. A. S. Kaplanyan and C. Dachsbacher. Adaptive progressive photon mapping. ACM Transactions on Graphics, 32(2):16:1–16:13, Apr. 2013. A. S. Kaplanyan and C. Dachsbacher. Path space regularization for holistic and robust light transport. Computer Graphics Forum (Proceedings of Eurographics), 32(2):63–72, 2013. C. Knaus and M. Zwicker. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics, 30(3):25:1–25:13, May 2011. S. Kniep, S. Häring, and M. Magnor. Efficient and accurate rendering of complex light sources. In Proceedings of the Twentieth Eurographics Conference on Rendering, EGSR’09, pages 1073–1081. Eurographics Association, 2009. M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Francisco, CA, USA, 3 edition, 2016. L. Schjøth, J. R. Frisvad, K. Erleben, and J. Sporring. Photon differentials. In Proceedings of GRAPHITE, volume 1, page 179, Perth, Australia, 2007. ACM Press. P. Shirley, B. Wade, P. M. Hubbard, D. Zareski, B. Walter, and D. P. Greenberg. Global illumination via density-estimation. In P. M. Hanrahan and W. Purgathofer, editors, Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), pages 219–230. Springer-Verlag, 1995. B. W. Silverman. Density Estimation for Statistics and Data Analysis, volume 26 of Monographs on Statistics and Applied Probability. Chapman and Hall, New York, NY, 1986. B. Spencer and M. W. Jones. Progressive photon relaxation. ACM Trans. Graph., 32(1):7:1–7:11, Feb. 2013. E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis, Stanford University, United States – California, Dec. 1997. E. Veach and L. J. Guibas. Optimally combining sampling techniques for Monte Carlo rendering. In Annual Conference Series (Proceedings of SIGGRAPH), volume 29, pages 419–428. ACM Press, Aug. 1995. E. Velázquez-Armendáriz, Z. Dong, B. Walter, and D. P. Greenberg. Complex luminaires: Illumination and appearance rendering. ACM Trans. Graph., 34(3):26:1–26:15, May 2015. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Microfacet models for refraction through rough surfaces. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering), pages 195–206. Eurographics Association, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73768 | - |
| dc.description.abstract | 本研究提出了一套基於密度估計技術的全局光照演算法。此方法奠基於現有之漸進式光子映射法,在疊代的過程中逐步加入更高頻率的光影細節。我們的方法藉由移除所有在場景模型內的奇異點,以強韌地捕捉所有可能的光傳輸路徑,且不必像一般光子映射法需在能量估計階段時進行材質相關參數的計算。我們所提出的光子錐收縮形式能確保在使用有限記憶體的前提下達成一致的估計,並有正式之數學證明與漸進誤差分析實驗以佐證其收斂性。最後,我們將含有複雜光傳輸路徑之場景其渲染結果與現今一致及無偏方法進行了質與量的分析和比較。 | zh_TW |
| dc.description.abstract | We propose a robust light transport algorithm that is able to capture all possible transport paths where the vast majority of the techniques involved are based on density estimation. It builds on top of existing progressive photon mapping methods where higher frequency lighting effects are added in subsequent iterations. Our approach is capable of eliminating all singularities encountered in a scene representation, and does not require evaluating material properties during the energy estimation process unlike the rest of photon mapping methods. The proposed photon cone focusing scheme is a consistent method that requires only finite memory to converge. A formal proof of convergence is given along with asymptotic analysis of estimation variance and bias. We compare our results to recent consistent and unbiased methods with scenes that contain difficult light paths in both qualitative and quantitative ways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:09:47Z (GMT). No. of bitstreams: 1 ntu-108-R05922176-1.pdf: 9645958 bytes, checksum: 7d218a95ebb4aab2b6fdc4537364c4ab (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 iii
Acknowledgements v 摘要 vii Abstract ix List of Symbols and Abbreviations xxi Mathematical Symbols xxi Common Abbreviations xxii 1 Introduction 1 1.1 Related Work 3 1.2 Summary of Original Contributions 5 1.3 Thesis Organization 6 2 Understand Photon Mapping 7 2.1 Energy Packet Interpretation 8 2.1.1 Photon Shooting Pass 8 2.1.2 Visualization Pass 8 2.2 Measurement Interpretation 10 2.2.1 Mathematical Formulation 10 2.2.2 The Zero Contribution Problem 12 2.2.3 A Biased Solution 13 2.3 Kernel Density Estimation 15 2.4 The Complete Photon Map 16 2.5 Progressive Extensions 17 2.5.1 The XPPM Family 17 2.5.2 Bi-directional Unification 18 2.5.3 Mollifier, Relaxation, and Beyond 18 3 Derivations of Photon Cone Focusing 21 3.1 Choosing a 4-D Kernel 21 3.2 Photon Cone Measurement 23 3.3 Properties of Photon Cone Radiance Estimate 25 3.3.1 Variance of the Estimation Error 25 3.3.2 Expected Estimation Error 27 3.4 Progressive Bandwidth Shrinkage 29 3.5 Proof of Convergence 30 3.5.1 Variance of the Average Estimation Error 31 3.5.2 Expected Average Estimation Error 31 3.5.3 Convergence of the Pixel Estimator 33 3.6 The PCF Method 34 3.7 Generalizations 35 3.7.1 Arbitrary 4-D Kernels 36 3.7.2 Participating Media 36 4 The PCF Rendering Algorithm 37 4.1 A High-Level Overview 37 4.1.1 Storing and Querying Photon Cones 38 4.1.2 Controlling Variables 38 4.2 Guiding Cone Samples 40 4.2.1 BSDF Importance Sampling 40 4.2.2 Direct Camera Connections 43 4.2.3 Conical Importon Map 44 4.3 Multiple Importance Sampling 46 4.3.1 Binary Technique 47 4.3.2 Triplet Techniques 48 4.4 Possible Extensions 48 5 Robust Light Transport with Photon Cones 51 5.1 Characteristics 51 5.1.1 Path Regular Expression 52 5.2 Dissolving Singularities 55 5.3 Comparisons 55 5.3.1 Quantitative Analyses 56 5.3.2 Qualitative Analyses 57 5.3.3 Limitations 57 6 Conclusions 65 6.1 Future Work 66 A Path Tracing 67 A.1 Radiance and Throughput 67 A.2 The Measurement Equation 69 B Supplemental Derivations for PCF 71 B.1 Expressing Variance of the Estimation Error 71 B.2 Expressing Expected Estimation Error 72 B.3 Expected Value of the Kernel 73 Bibliography 77 | |
| dc.language.iso | en | |
| dc.subject | 光線追蹤 | zh_TW |
| dc.subject | 光子錐 | zh_TW |
| dc.subject | 彩現 | zh_TW |
| dc.subject | 渲染 | zh_TW |
| dc.subject | 算繪 | zh_TW |
| dc.subject | 全局光照 | zh_TW |
| dc.subject | 密度估計 | zh_TW |
| dc.subject | 光子映射 | zh_TW |
| dc.subject | 光照傳輸 | zh_TW |
| dc.subject | photon mapping | en |
| dc.subject | photon cone | en |
| dc.subject | global illumination | en |
| dc.subject | density estimation | en |
| dc.subject | light transport | en |
| dc.subject | ray tracing | en |
| dc.subject | rendering | en |
| dc.title | 以密度估計技術實現強韌光傳輸模擬 | zh_TW |
| dc.title | Density Estimation Techniques for Robust Light Transport Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊永裕(Yung-Yu Chuang),葉正聖(Jeng-Sheng Yeh) | |
| dc.subject.keyword | 光照傳輸,光子映射,密度估計,全局光照,算繪,渲染,彩現,光線追蹤,光子錐, | zh_TW |
| dc.subject.keyword | light transport,photon mapping,density estimation,global illumination,rendering,ray tracing,photon cone, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201901709 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
