請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73727
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾(Yao-Chien Alex Chang) | |
dc.contributor.author | Ying-Hua Chin | en |
dc.contributor.author | 秦英華 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:52Z | - |
dc.date.available | 2026-01-31 | |
dc.date.copyright | 2021-03-02 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-01-29 | |
dc.identifier.citation | 林瑞松. 1998. 文心蘭切花採收後重切及蔗糖, 8-hydroxyquinoline sulfate 對切花品質之影響. 農林學報:115-123. 林瑞松. 1999. 文心蘭切花老化及品質保鮮. 農林學報 48:63-83. 許榮華. 2013. 台灣文心蘭切花產銷現況及產業經營需求. 臺中區農業改良場特刊:201-207. 陳培波 2019. 除芽對文心蘭生長與開花之影響及文心蘭切花內碳水化合物之運移. 國立臺灣大學園藝暨景觀學系學位論文. 臺北. 黃惠琳、林棟樑. 2002. 文心蘭保鮮處理對運銷成本結構改善之個案研究. 臺南區農業改良場研究彙報:69-80. 黃肇家. 1998. 文心蘭切花之乙烯生成及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究 47:125-134. 行政院農業委員會. 2018. 農業統計資料查詢. Jan. 18, 2019. <http://agrstat.coa.gov.tw/sdweb/public/trade/TradeReport.aspx>. Aghdam, M.S., A. Jannatizadeh, M. Sheikh-Assadi, and P. Malekzadeh. 2016. Alleviation of postharvest chilling injury in anthurium cut flowers by salicylic acid treatment. Scientia Hort. 202:70-76. Ahmad, I., J.M. Dole, A.S. Carlson, and F.A. Blazich. 2013. Water quality effects on postharvest performance of cut calla, hydrangea, and snapdragon. Scientia Hort. 153:26-33. Amingad, V., K. Sreenivas, B. Fakrudin, G. Seetharamu, and T. Shankarappa. 2017. Comparison of silver nanoparticles and other metal nanoparticles on postharvest attributes and bacterial load in cut roses var. Taj Mahal. Intl. J. Pure Appl. Bioscience 5:579-584. Bartoli, C.G., M. Simontacchi, E.R. Montaldi, and S. Puntarulo. 1997. Oxidants and antioxidants during aging of chrysanthemum petals. Plant Sci. 129:157-165. Borohov, A., T. Tirosh, and A.H. Halevy. 1976. Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol. 58:175-178. Bowler, C., M.v. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Biol. 43:83-116. Carrillo-López, L.M., A. Morgado-González, and A. Morgado-González. 2016. Biosynthesized silver nanoparticles used in preservative solutions for Chrysanthemum cv. Puma. J. Nanomaterials 1-11. Chakrabarty, D., A.K. Verma, and S.K. Datta. 2009. Oxidative stress and antioxidant activity as the basis of senescence in Hemerocallis (day lily) flowers. Journal of Horticulture Forestry 1:113-119. Chand, S., V. Kumar, and J. Kumar. 2012. Effect of AgNO3 and 8-HQC on vase life of cut roses. Hort. Flora. Res. Spectrum 1:380-382. Chen, C., L. Zeng, and Q. Ye. 2018. Proteomic and biochemical changes during senescence of Phalaenopsis ‘Red Dragon’petals. Intl. J. Mol. Sci. 19:1-25. Chuang, Y.C. and Y.C.A. Chang. 2013. The role of soluble sugars in vase solutions during the vase life of Eustoma grandiflorum. HortScience 48:222-226. da Silva, J.A.T. 2003. The cut flower: postharvest considerations. J. Biol. Sci 3:406-442. Damunupola, J.W. and D.C. Joyce. 2008. When is a vase solution biocide not, or not only, antimicrobial? J. Jpn. Soc. Hort. Sci. 77:211-228. Desikan, R., K. Last, R. Harrett‐Williams, C. Tagliavia, K. Harter, R. Hooley, J.T. Hancock, and S.J. Neill. 2006. Ethylene‐induced stomatal closure in Arabidopsis occurs via AtrbohF‐mediated hydrogen peroxide synthesis. Plant J. 47:907-916. Draper, H. and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation, p. 421-431. Methods in enzymology. Vol. 186. Elsevier. Gehl, C., M.M. Jowkar, J. Wagenhaus, and M. Serek. 2019. Application of 1-MCP as a liquid formulation prevents ethylene-induced senescence in Phalaenopsis orchid flowers and Kalanchoë blossfeldiana inflorescences. J. Hort. Sci. Biotechnol. 94:499-506. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930. Goh, C., A. Halevy, R. Engel, and A. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Scientia Hort. 26:57-67. Halevy, A.H. 1976. Treatments to improve water balance of cut flowers. Acta Hort 64:223-230. Halevy, A.H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers, part 1. Hort. Rev. 1:204-236. Halevy, A.H. and S. Mayak. 1981. Senescence and post harvest physiology of cut flowers-part II. Hort. Rev. 3:59-143. Han, A., S. Cao, Y. Li, H. Wang, Y. Wei, X. Shao, and F. Xu. 2019. Sucrose treatment suppresses programmed cell death in broccoli florets by improving mitochondrial physiological properties. Postharv. Biol. Technol. 156:1-7. Hassan, F., R. Mazrou, A. Gaber, and M. Hassan. 2020. Moringa extract preserved the vase life of cut roses through maintaining water relations and enhancing antioxidant machinery. Postharv. Biol. Technol. 164:111-156. Hew, C., G. Lee, and S. Wong. 1980. Occurrence of non-functional stomata in the flowers of tropical orchids. Ann. Bot. 46:195-201. Ho, L. and R. Nichols. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Ann. Bot. 41:227-242. Ichimura, K., M. Kishimoto, R. Norikoshi, Y. Kawabata, and K. Yamada. 2005. Soluble carbohydrates and variation in vase-life of cut rose cultivars ‘Delilah’ and ‘Sonia’. J. Hort. Sci. Biotechnol. 80:280-286. Ichimura, K., K. Kohata, and R. Goto. 2000. Soluble carbohydrates in Delphinium and their influence on sepal abscission in cut flowers. Physiol. Plant. 108:307-313. Ichimura, K. and K. Suto. 1999. Effects of the time of sucrose treatment on vase life, soluble carbohydrate concentrations and ethylene production in cut sweet pea flowers. Plant Growth Regulat. 28:117-122. Ketsa, S. and A. Boonrote. 1990. Holding solutions for maximizing bud opening and vase-life of Dendrobium ‘Youppadeewan’flowers. J. Hort. Sci. 65:41-47. Ketsa, S., Y. Piyasaengthong, and S. Prathuangwong. 1995. Mode of action of AgNO3 in maximizing vase life of Dendrobium ‘Pompadour’ flowers. Postharv. Biol. Technol. 5:109-117. Khunmuang, S., S. Kanlayanarat, C. Wongs-Aree, S. Meir, S. Philosoph-Hadas, M. Oren-Shamir, R. Ovadia, and M. Buanong. 2019. Ethylene induces a rapid degradation of petal anthocyanins in cut Vanda ‘Sansai Blue’ orchid flowers. Frontiers Plant Sci. 10:1-13. Kumar, N., G.C. Srivastava, and K. Dixit. 2008. Flower bud opening and senescence in roses (Rosa hybrida L.). Plant Growth Regulat. 55:81. Levine, A., R. Tenhaken, R. Dixon, and C. Lamb. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593. Li, D., X. Zhang, Y. Xu, L. Li, M.S. Aghdam, and Z. Luo. 2019. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit. Food Chem. 289:112-120. Li, H., H. Li, J. Liu, Z. Luo, D. Joyce, and S. He. 2017. Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’spikes. Postharv. Biol. Technol. 123:102-111. Lohr, V.I. and C. Pearson-Mires. 1990. Damage to cut roses from fluoride in keeping solutions varies with cultivar. HortScience 25:215-216. Lu, N., L. Wu, and M. Shi. 2020. Selenium enhances the vase life of Lilium longiflorum cut flower by regulating postharvest physiological characteristics. Scientia Hort. 264:1-4. Madhavan, S., A. Chrominiski, and B.N. Smith. 1983. Effect of ethylene on stomatal opening in tomato and carnation leaves. Plant Cell Physiol. 24:569-572. Marissen, N. and L. La Brijn. 1995. Source-sink relations in cut roses during vase life. Acta Hort. 405:81-88. Mattiuz, C., B. Mattiuz, J. Pietro, and T. Rodrigues. 2010. Effect of different pulse treatments on vase life of inflorescences of Oncidium varicosum'Samurai'. Acta Hort 934:465-471. Mayak, S., B. Bravdo, A. Gvilli, and A.H. Halevy. 1973. Improvement of opening of cut gladioli flowers by pretreatment with high sugar concentrations. Scientia Hort. 1:357-365. Mayak, S., A.H. Halevy, S. Sagie, A. Bar‐Yoseph, and B. Bravdo. 1974. The water balance of cut rose flowers. Physiol. Plant. 31:15-22. Mayak, S., Y. Vaadia, and D.R. Dilley. 1977. Regulation of senescence in carnation (Dianthus caryophyllus) by ethylene: mode of action. Plant Physiol. 59:591-593. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. Naing, A.H., N.M. Win, J.-S. Han, K.B. Lim, and C.K. Kim. 2017. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci. 8:1-12. Nichols, R. 1973. Senescence of the cut carnation flower: respiration and sugar status. J. Hort. Sci. 48:111-121. Norikoshi, R., T. Shibata, T. Niki, and K. Ichimura. 2016. Sucrose treatment enlarges petal cell size and increases vacuolar sugar concentrations in cut rose flowers. Postharv. Biol. Technol. 116:59-65. Ohkawa, K., Y. Kasahara, and J.-N. Suh. 1999. Mobility and effects on vase life of silver-containing compounds in cut rose flowers. HortScience 34:112-113. Porat, R., A. Halevy, M. Serek, and A. Borochov. 1995a. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiol. Plant. 93:778-784. Porat, R., E. Shlomo, M. Serek, E.C. Sisler, and A. Borochov. 1995b. 1-Methylcyclopropene inhibits ethylene action in cut phlox flowers. Postharv. Biol. Technol. 6:313-319. Pun, U.K., T. Yamada, M. Azuma, K. Tanase, S. Yoshioka, H. Shimizu-Yumoto, S. Satoh, and K. Ichimura. 2016. Effect of sucrose on sensitivity to ethylene and enzyme activities and gene expression involved in ethylene biosynthesis in cut carnations. Postharv. Biol. Technol. 121:151-158. Pun, U.K., T. Yamada, K. Tanase, H. Shimizu-Yumoto, S. Satoh, and K. Ichimura. 2014. Effect of ethanol on ethylene biosynthesis and sensitivity in cut carnation flowers. Postharv. Biol. Technol. 98:30-33. Reid, M.S. 1988. The role of ethylene in flower senescence. Acta Hort. 261:157-170. Reid, M.S. and R.Y. Evans. 1985. Control of cut flower opening. Intl. Symp. Postharv. Physiol. Ornamentals 181:45-54. Reid, M.S. and A.M. Kofranek. 1980. Postharvest physiology of cut flowers. Chronica Hort. 20:25-27. Romero‐Puertas, M.C., F.J. Corpas, L.M. Sandalio, M. Leterrier, M. Rodríguez‐Serrano, L.A. Del Río, and J.M. Palma. 2006. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New phytologist 170:43-52. Sacalis, J.N. 1973. Sucrose: Patterns of uptake and some effects on cut flower senescence. In “Symposium on Postharvest Physiology of Cut Flowers”, Vol. 41, pp. 45-56. Saeed, T., I. Hassan, N.A. Abbasi, and G. Jilani. 2016. Antioxidative activities and qualitative changes in gladiolus cut flowers in response to salicylic acid application. Scientia Hort. 210:236-241. Serek, M., R.B. Jones, and M.S. Reid. 1994. Role of ethylene in opening and senescence of Gladiolus sp. flowers. J. Amer. Soc. Hort. Sci. 119:1014-1019. Singh, A., J. Kumar, P. Kumar, and V. Singh. 2007. Membrane stability and post harvest keeping quality of gladiolus cut spikes as influenced by certain chemicals with sucrose in vase solution. Indian J. Plant Physiol. 12:63-71. Stoddard, E. and P. Miller. 1962. Chemical control of water loss in growing plants. Science 137:224-225. Turrens, J.F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552:335-344. van Doorn, W.G. 1997. Water relations of cut flowers. Hort. Rev. 18:1-68. Van Doorn, W.G., H.C.M. De Stigter, Y. De Witte, and A. Boekestein. 1991. Micro‐organisms at the cut surface and in xylem vessels of rose stems: a scanning electron microscope study. J. Appl. Bacteriol. 70:34-39. van Doorn, W.G. and M.S. Reid. 1995. Vascular occlusion in stems of cut rose flowers exposed to air: role of xylem anatomy and rates of transpiration. Physiol. Plant. 93:624-629. Van Meeteren, U. and H. Van Gelder. 1999. Effect of time since harvest and handling conditions on rehydration ability of cut chrysanthemum flowers. Postharv. Biol. Technol. 16:169-177. Veen, H. 1979. Effects of silver on ethylene synthesis and action in cut carnations. Planta 145:467-470. Verlinden, S. and J.J.V. Garcia. 2004. Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharv. Biol. Technol. 31:305-312. Waithaka, K., L. Dodge, and M. Reid. 2001. Carbohydrate traffic during opening of gladiolus fiorets. J. Hort. Sci. Biotechnol. 76:120-124. Xiu, Z.-M., J. Ma, and P.J. Alvarez. 2011. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 45:9003-9008. Yamanaka, M., K. Hara, and J. Kudo. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71:7589-7593. Zhang, C., J. Fu, Y. Wang, S. Gao, D. Du, F. Wu, J. Guo, and L. Dong. 2015. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’cut flowers. Postharv. Biol. Technol. 101:73-81. Zhao, D., M. Cheng, W. Tang, D. Liu, S. Zhou, J. Meng, and J. Tao. 2018. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 255:1001-1013. Zhou, Y., C.Y. Wang, H. Ge, F.A. Hoeberichts, and P.B. Visser. 2005. Programmed cell death in relation to petal senescence in ornamental plants. J. Integrative Plant Biol. 47:641-650. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73727 | - |
dc.description.abstract | 本研究添加不同可溶性醣類 (蔗糖、葡萄糖、果糖) 於文心蘭切花瓶插液中,探討可溶性醣類添加對文心蘭切花之保鮮、植體內碳水化合物、乙烯生成量及抗氧化酵素之影響,期望能獲得具較佳瓶插壽命之切花採後保鮮方法。 添加蔗糖、葡萄糖、果糖於瓶插液中,文心蘭Oncidesa Gower Ramsey ‘Honey Angel’切花相較於未加醣類之對照組可延緩切花老化,其中50 mg·L-1 glucose + 200 mg·L-1 8-HQS瓶插處理之觀賞壽命可達20天,相較於200 mg·L-1 8-HQS對照組延長4天觀賞日數,同時維持切花水分平衡,顯著延緩切花萎凋速率。於兩次的試驗結果發現單醣 (葡萄糖、果糖) 之處理相較於雙醣 (蔗糖) 具有較佳之保鮮效果。 添加醣類於瓶插液中,可提升文心蘭花苞內果糖與葡萄糖含量,協助花苞順利展開。另外,對照組小花之可溶性醣含量於萎凋期間持續下降,瓶插液添加可溶性醣後使得花朵維持較高含量的可溶性醣,具延長花朵壽命之效果。 不同濃度乙烯處理皆降低文心蘭切花最大完全展開小花數,顯著減少觀賞品質,其中1 µL·L-1乙烯減少約31.5%花朵數,而於乙烯環境下處理50 mg·L-1 glucose + 200 mg·L-1 8-HQS瓶插液可提升瓶插初期瓶插液吸收量、延緩相對鮮重下降,並提升花苞開放程度。然而,葡萄糖添加於瓶插液對切花乙烯生成量並無顯著影響。 文心蘭於瓶插初期主要以過氧化氫酶 (CAT) 與抗壞血酸過氧化酶 (APX) 作為主要抗氧化酵素,於瓶插後期老化徵狀 (花瓣失水、小花梗黃化) 出現時,超氧化物歧化酶 (SOD) 為重要抗氧化酵素。於瓶插液中添加葡萄糖後,SOD活性自29.87 unit·g-1增加至36.63 unit·g-1,CAT活性由0.09 unit·g-1增加至0.11 unit·g-1,提升文心蘭花瓣清除活性氧物質能力,延緩細胞氧化逆境失衡造成的老化現象。 | zh_TW |
dc.description.abstract | The purposes of this study were to investigate senescence phenomenon, carbohydrates changes, ethylene production, and antioxidant enzymes activities of Oncidesa cut flowers after treated with soluble sugars (sucrose, glucose, and fructose). We hope to get a better postharvest fresh-keeping method of cut flowers and understand the physiology of Oncidesa cut flowers treated with soluble sugars. Oncidesa cut flowers were treated with soluble sugars (sucrose, glucose, fructose) in vase. Adding soluble sugars in vase significantly prolonged vase life. The vase life of Oncidesa treated with 50 mg·L-1 glucose + 200 mg·L-1 8-HQS was up to 20 days. Compared with 200 mg·L-1 8-HQS, the vase life extended by 4 days. Also, it maintained water balance of the cut flowers, and significantly slowed down wilting rate of cut flowers. The results of two experiments demonstrated that monosaccharides (glucose, fructose) had a better preservation effect than disaccharides (sucrose). During the vase days of Oncidesa cut flowers, the addition of sugars greatly increased the contents of fructose and glucose in the flower buds, helping them to develop. Compared with control, in which soluble sugars contents in the florets continued to decrease, soluble sugars content maintained high in the florets of cut flowers treated with sugars in vase. Thus, sugar-added treatments have the effect of prolonging vase life. Ethylene treatments at various concentrations reduced the number of fully expanded florets of Oncidesa and significantly reduced cut flower quality. Among the treatments, 1 µL·L-1 ethylene reduced the number of florets by about 31.5%, while 50 mg·L-1 glucose + 200 mg·L-1 8-HQS increased the absorption of solution at the beginning of vase days, delayed the drop of relative fresh weight, and increased the opening of flower buds. However, the addition of glucose in vase has no significant effect on reducing ethylene production of cut flowers. In the early vase days, Oncidesa mainly used catalase (CAT) and ascorbate peroxidase (APX) as the main antioxidant enzymes. At the late period of vase days, when senescence symptoms (petal dehydration or pedicel yellowing) appeared, superoxide dismutase (SOD) was an important antioxidant enzyme. After glucose was added in vase, the activity of SOD increased from 29.87 unit·g-1 to 36.63 unit·g-1 and CAT activity increased from 0.09 unit·g-1 to 0.11 unit·g-1. Also, they enhanced the ability of removing reactive oxygen species, and delayed senescence symptoms caused by oxidative stress. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:52Z (GMT). No. of bitstreams: 1 U0001-2901202115040300.pdf: 6094187 bytes, checksum: 3580ea56b300404c36dc3ab212ee6254 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 前言 (Introduction) 1 前人研究 (Literature Review) 3 一、 影響切花採後品質之因子及常見採後處理方法 3 二、 蘭科植物老化生理 6 三、 蘭花切花採後處理 6 四、 抗氧化酵素系統 7 材料與方法 (Materials and Methods) 9 一、 植物材料 9 二、 試驗場地與日期 9 三、 試驗設計 10 四、 一般調查項目 13 五、 可溶性醣分析 14 六、 乙烯生成量分析 15 七、 脂質過氧化作用之測定 15 八、 過氧化氫含量分析 16 九、 抗氧化酵素分析 16 十、 統計分析 18 結果 (Results) 19 一、 不同可溶性醣類添加於瓶插液對文心蘭切花瓶插壽命之影響1 19 二、 不同可溶性醣類添加於瓶插液對文心蘭切花瓶插壽命之影響2 20 三、 文心蘭切花對瓶插液醣類之利用 21 四、 瓶插液葡萄糖添加對文心蘭切花乙烯生成量之影響 23 五、 瓶插液葡萄糖添加對文心蘭老化期間抗氧化酵素活性變化之影響 27 討論 (Discussion) 29 一、 文心蘭切花瓶插期間醣類吸收與水分平衡 29 二、 文心蘭切花對瓶插液醣類之利用 30 三、 瓶插液葡萄糖添加對文心蘭切花乙烯生成量之影響 32 四、 瓶插液葡萄糖添加對文心蘭老化期間抗氧化酵素活性變化之影響 34 參考文獻 (Reference) 37 表 (Tables) 44 圖 (Figures) 49 結論 (Conclusion) 84 | |
dc.language.iso | zh-TW | |
dc.title | 可溶性醣提升文心蘭切花採後品質 | zh_TW |
dc.title | Improvement of Postharvest Quality of Oncidesa by Soluble Sugars | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 官彥州(Yen-Chou Kuan),李堂察(Tan-Cha Lee) | |
dc.subject.keyword | 文心蘭,可溶性醣,採後處理, | zh_TW |
dc.subject.keyword | Oncidesa,soluble sugars,postharvest, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU202100256 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-01-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2901202115040300.pdf 目前未授權公開取用 | 5.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。