請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73709完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮 | |
| dc.contributor.author | Che-Hao Kuo | en |
| dc.contributor.author | 郭哲豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:08:30Z | - |
| dc.date.available | 2029-08-17 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-17 | |
| dc.identifier.citation | 1. Bates, P. D. and De Roo, A. P. J., 2000, A simple raster-based model for flood inundation simulation, Journal of Hydrology 236(1-2), 54-77.
2. Bates, P. D., Horritt, M. S. and Fewtrell, T. J., 2010, A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, Journal of Hydrology, 387(1-2), 33–45. 3. Chang, T. J., Wang, C. H. and Chen, A. S., 2015, A Novel Approach to Model Dynamic Flow Interactions between Storm Sewer System and Overland Surface for Different Land Covers in Urban Areas, Journal of Hydrology, 524, 662-679. 4. Chang, T. J., Wang, C. H., Chen, A. S. and Djordjevic´, S., 2018, The effect of inclusion of inlets in dual drainage modelling, Journal of Hydrology, 559, 541-555. 5. Chen, A. S., Hsu, M. H., Chen, T. S. and Chang, T. J., 2005, An integrated inundation model for highly developed urban areas, Water science and Technology, 51(2), 221-9. 6. Dottori, F. and Todini, E., 2010, A 2D flood inundation model based on cellular automata approach, XVIII International Conference on Water Resources, 11789. 7. Dottori, F. and Todini, E., 2011, Developments of a flood inundation model based on the cellular automata approach: testing different methods to improve model performance, Physics and Chemistry of the Earth, Parts A/B/C, 36(7-8), 266-280. 8. FLO-2D© PRO Storm Drain Manual, 2017. 9. Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjevic´, S. and Savić, D. A., 2013, Formulation of a fast 2D urban pluvial flood model using a cellular automata approach, Journal of Hydroinformatics, 15(3), 676-686. 10. Gironás, J., Roesner, L. A. and Davis, J., 2015, Storm Water Management Model Application Manual, Department of Civil and Environmental Engineering Colorado State University. 11. Gómez, M., Rabasseda, G. H. and Russo , B., 2013, Experimental campaign to determine grated inlet clogging factors in an urban catchment of Barcelona, Urban Water Joural, 10(1), 50-61. 12. Guidolin, M., Chen, A. S. and Pasquale, N., 2015, CADDIES: caflood application user guide. 13. Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjevic´, S. and Savić, D. A., 2016, A weighted cellular automata 2D inundation model for rapid flood analysis, Environmental Modelling and Software, 84, 378-394. 14. Guo, James C.Y., 2006, “Decay-based Clogging Factor for Curb Inlet Design”, Vol 132, No. 11, ASCE J. of Hydraulic Engineering, November. 15. Guo, James C.Y., MacKenzie Ken., 2012, Hydraulic efficiency of grate and curb-opening intelts under clogging effect. University of Colorado Denver and Urban Drainage and Flood Control District, Denver, Colorado. 16. Hsu, M. H., Chen, S. H. and Chang, T. J., 2000, Inundation Simulation for Urban Drainage Basin with Storm Sewer System, Journal of Hydrology, 234(1-2), 21-37. 17. Hsu, M. H., Chen, S. H. and Chang, T. J., 2002, Dynamic Inundation Simulation of Storm Water Interaction between Sewer System and Overland Flows, Journal of the Chinese Institute of Engineers, 25(2), 171-177. 18. Huber, W. C. and Dickinson, R. E., 1988, Storm Water Management Model, User’s Manual Ver. IV, U.S. EPA. 19. Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D. and Werner, M. G. F., 2005, An adaptive time step solution for raster-based storage cell modelling of floodplain inundation, Advances, Water Resources, 28, 975-991. 20. Leitão, João P., Simões, Nuno E., Pina, Rui Daniel, Ochoa-Rodriguez, Susana, Onof, Christian, Sá Marques, Alfeu, 2016, Stochastic evaluation of the impact of sewer inlets’ hydraulic capacity on urban pluvial flooding. Stoch Environ Res Risk Assess. 31:1907–1922 21. O’Brien, J. S., Julien, P. Y. and Fullerton, W. T., 1993, Two-Dimensional Water Flood and Mudflow Simulation, Journal of Hydraulic Engineering, 119(2), 244-259. 22. O’Brien, J. S., 2012, FlO-2D User Manual Version 2009, FlO-2D EPA SWMM Guidelines. 23. Rebecca, J., Chen, A. S., Savić, D. A. and Djordjević, S., 2014, Quick and Accurate Cellular Automata Sewer Simulator, Journal of Hydroinformatics, 16(6), 1359-1374. 24. Roesner, L. A., Aldrich, J. A. and Dickinson, R. E., 1988, Storm Water Management Model, Version 4, Environmental Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency. 25. Rossman, L. A., 2015, Storm Water Management Model Reference Manual Volume I – Hydrology, Nation Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. 26. Rossman, L. A., 2015, Storm Water Management Model User’s Manual, Version 5.0, Nation Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. 27. Veerappan, R., Le, J., 2016, Hydraulic efficiency of road drainage inlets for storm drainage system under clogging effect. Catchment and Waterways Department, WIT Transactions on The Built Environment, 165, 271-281. 28. Yen, B. C., 1986, Hydraulics of Sewers, Advances in Hydro science, V.14. Academic Press, New York, 1-123. 29. 呂育勳,1988年,洪氾區淹水模式之初步研究,國立成功大學水利及海洋工程研究所碩士論文。 30. 吳啟瑞,1993年,八掌溪流域之淹水模擬,國立臺灣大學農業工程研究所碩士論文。 31. 許銘熙,1998年,抽水站與閘門操作對都會區淹水影響之研究(一),行政院國科會研究計畫成果報告。 32. 楊昌儒,2000年,地文性淹水預報系統建構之研究,國立成功大學水利工程學系博士論文。 33. 梁剛瑋,2000年,都市街區―路網淹排水模式之研究,國立成功大學水利及海洋工程研究所碩士論文。 34. 陳宣宏,2002年,漫地流與雨水下水道水流之交互動態模擬,國立臺灣大學生物環境系統工程學系博士論文。 35. 經濟部水利署水利規劃試驗所,2004年,台中市及周邊排水淹水潛勢與預警系統建立之研究。 36. 廖烜欣,2009年,街道與雨水下水道淹排水模式之研究,國立成功大學水利及海洋工程研究所碩士論文。 37. 臺北市政府,2009年,臺北市都市計畫書-臺北市文山區都市計畫通盤檢討(主要計畫)案。 38. 臺北市政府,2009年,臺北市都市計畫書-擬定臺北市文山區木柵路一段中興山莊附近地區細部計畫案。 39. 李明儒,2010年,雨水下水道淤積對於都市淹水之影響評估,國立交通大學土木工程學系碩士論文。 40. 內政部營建署,2010年,雨水下水道系統規劃原則檢討。 41. 內政部營建署,2010年,雨水下水道設計指南。 42. 內政部營建署,2011年,下水道誌-政府自辦雨水篇。 43. 經濟部水利署,2010年,淡水河流域及臺北市、臺北縣、桃園縣與基隆市淹水潛勢圖更新計畫。 44. 謝宗霖,2013年,都會區淹水模式之比較與應用,國立臺灣大學生物環境系統工程學系碩士論文。 45. 王嘉和,2015年,新一代都會區地表與雨水下水道水流互動之淹水模擬,國立臺灣大學生物環境系統工程學系博士論文。 46. 李承芃,2018年,不同空間分布情況之雨量資料及堵塞因子對都會區淹水之影響,國立臺灣大學生物環境系統工程學系碩士論文。 47. 林吉堃,2018年,都會區快速淹水模擬模式之研發與應用,國立臺灣大學生物環境系統工程學系碩士論文。 48. 臺北市資料大平臺(https://data.taipei/#/)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73709 | - |
| dc.description.abstract | 當降雨發生於都會區時,需藉由雨水下水道系統將地表逕流排至河川或海域以避免積淹水災情發生,然而近年來氣候變遷及極端氣候影響之下,若下水道系統因強降雨導致垃圾及落葉堆積於側溝之格柵進水口造成堵塞之情況,則使水流無法順暢進入下水道系統,進而增加都會區積淹水事件發生機率。
本研究為探討不同雨水入流下水道系統方式及進水口堵塞對都會區淹水模擬之影響,先比較雨水由人孔與側溝進水口入流之差異,分析何種入流方式於模擬中有較佳之表現,從結果中發現以進水口方式較佳但仍有誤差,故再以進水口入流方式考量0%~100%堵塞情況,並考量全區進水口皆堵塞及僅相鄰路樹進水口之部分堵塞情境,分析進水口無堵塞、進水口皆堵塞及僅相鄰路樹進水口之部分堵塞三種情境之淹水情況,藉由準確度、偵測率、精確度及預兆得分和雨水下水道水位進行分析探討,以探討何種雨水入流方式與堵塞情境有較佳表現。 本研究以臺北市文山區木柵次分區作為研究區域,並透過兩場歷史事件進行評估,其結果顯示以進水口入流無論是在地表淹水範圍或下水道水位皆較貼近調查情況,而部分堵塞情境在堵塞係數20%時能使模擬結果較無堵塞更接近實際淹水調查之情形,因此進行都會區淹水模擬時,應多加考量進水口以及鄰路樹部分堵塞的情況。 | zh_TW |
| dc.description.abstract | In recent years, the effects of climate change and extreme weather have caused more and more rainfall intensity, more and more flooding events, and the increased rainfall intensity to move the garbage and leaves on roads. If the garbage and fallen leaves block road drains, it will increase the probability of urban flooding events.
This study analyzes urban flooding simulations with various methods of coupling one sewer flow model and one overland flow model. The runoff enters the sewer system by manholes and road drains respectively. The flooding simulation results show that the road drainage method has better evaluation results. However, there are still some errors compared with the observation data. Therefore, this study considers the blockage of road drains and sets the 0% to 100% clogging factors as the set value with reference to relevant literature. This study uses three kinds of road drain clogging scenarios for urban flooding simulation. 1. All road drains are not clogged, 2. All road drains are clogged, 3. road drains around road trees are clogged. And use Accuracy(ACC), Probability of Detection(POD), Precision or Predictive(PPV), Threat Score(TS) and the water level at the WL gauge to analyze which clogging scenarios have better urban flooding simulation results. In this study, the Muzha sub-catchment area of Wenshan District in Taipei City is selected as the research area. Two historical flooding events are used to evaluate the above scenarios. The best flooding simulation result is this scenario in 20% clogging factor of road drains around road trees. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:30Z (GMT). No. of bitstreams: 1 ntu-108-R05622027-1.pdf: 8175434 bytes, checksum: 282f77453c5d0f664c6bb58967b21bfb (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 都會區淹水模擬 2 1.2.2 二維快速漫地流模式 4 1.2.3 都會區排水系統堵塞現象 8 1.3 研究目的 10 1.4 研究流程 11 第二章 研究方法 13 2.1 一維雨水下水道模式 13 2.2 二維地表漫地流模式 19 2.3 模式銜接 27 2.4 側溝進水口堵塞機制 30 2.5 淹水模式評估方法 33 2.5.1 準確度 33 2.5.2 偵測率 34 2.5.3 精確度 35 2.5.4 預兆得分 35 第三章 研究區域及情境設定 36 3.1 研究區域概述 36 3.2 資料蒐集 38 3.3 地文資料與水利資料設定 43 3.4 情境設定 45 3.4.1 雨水入流設定 45 3.4.2 進水口堵塞設置 46 第四章 淹水事件模擬結果與分析 50 4.1 歷史淹水事件說明 50 4.1.1 降雨資料 52 4.1.2 淹水調查範圍 53 4.1.3 下水道水位 55 4.2 情境分析結果 56 4.2.1 雨水入流下水道方式情境分析結果 56 4.2.2 進水口之不同堵塞情境分析結果 65 第五章 結論與建議 84 5.1 結論 84 5.2 建議 85 參考文獻 87 附錄A 93 附錄B 94 附錄C 95 附錄D 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 都會區快速淹水模式 | zh_TW |
| dc.subject | 交互演算 | zh_TW |
| dc.subject | 堵塞因子 | zh_TW |
| dc.subject | 格柵進水口 | zh_TW |
| dc.subject | 雨水下水道 | zh_TW |
| dc.subject | 2D Rapid flood model | en |
| dc.subject | Dynamic flow interaction | en |
| dc.subject | Clogging factor | en |
| dc.subject | Grate inlet | en |
| dc.subject | Storm sewer flow | en |
| dc.title | 下水道系統入流方式與進水口堵塞效應對都會區淹水模擬之影響 | zh_TW |
| dc.title | Pluvial Flooding Modelling in Urban Areas: The Roles of Storm Sewer Inlet Type and Inlet Clogging Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宣宏,高宏名,張高華,王嘉和 | |
| dc.subject.keyword | 都會區快速淹水模式,交互演算,堵塞因子,格柵進水口,雨水下水道, | zh_TW |
| dc.subject.keyword | 2D Rapid flood model,Dynamic flow interaction,Clogging factor,Grate inlet,Storm sewer flow, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU201903734 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
