Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃永芬
dc.contributor.authorYu-Lan Linen
dc.contributor.author林譽嵐zh_TW
dc.date.accessioned2021-06-17T08:08:11Z-
dc.date.available2023-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-18
dc.identifier.citationAbebe, T., Melmaiee, K., Berg, V., and Wise, R. P. (2010). Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Functional & Integrative Genomics, 10(2):191–205.
Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9):1655–1664.
Alexandrov, N., Tai, S., Wang, W., Mansueto, L., Palis, K., Fuentes, R. R., Ulat, V., Chebotarov, D., Zhang, G., Li, Z., Mauleon, R., Hamilton, R., and McNally, K. L. (2015). SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Research, 43(D1):D1023–D1027.
Bessho-Uehara, K., Wang, D. R., Furuta, T., Minami, A., Nagai, K., Gamuyao, R., Asano, K., Angeles-Shim, R. B., Shimizu, Y., Ayano, M., Komeda, N., Doi, K., Miura, K., Toda, Y., Kinoshita, T., Okuda, S., Higashiyama, T., Nomoto, M., Tada, Y., Shino- hara, H., Matsubayashi, Y., Greenberg, A., Wu, J., Yasui, H., Yoshimura, A., Mori, H., McCouch, S. R., and Ashikari, M. (2016). Loss of function at RAE2 , a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proceedings of the National Academy of Sciences, 113(32):8969–8974.
Bevilacqua, C. B., Basu, S., Pereira, A., Tseng, T.-M., Zimmer, P. D., and Burgos, N. R. (2015). Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance. PLOS ONE, 10(7):e0132100.
Borjas, A. H., De Leon, T. B., and Subudhi, P. K. (2016). Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica, 208(2):251– 264.
Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A One-Penny Imputed Genome from Next-Generation Reference Panels. The American Journal of Human Genetics, 103(3):338–348.
Bräutigam, A. and Gowik, U. (2010). What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research: Next generation se- quencing. Plant Biology, 12(6):831–841.
Burgos, N. R., Singh, V., Tseng, T. M., Black, H., Young, N. D., Huang, Z., Hyma, K. E., Gealy, D. R., and Caicedo, A. L. (2014). The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice. PLANT PHYSIOLOGY, 166(3):1208–1220.
Bush, W. S. and Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12):e1002822.
Civá, P., Craig, H., Cox, C. J., and Brown, T. A. (2015). Three geographically separate domestications of Asian rice. Nature Plants, 1(11).
Cui, Y., Song, B. K., Li, L.-F., Li, Y.-L., Huang, Z., Caicedo, A. L., Jia, Y., and Olsen, K. M. (2016). Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice. G3:Genes|Genomes|Genetics, 6(12):4105–4114.
de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., and Calus, M. P. L. (2013). Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics, 193(2):327–345.
Dilday, R. H., Mgonja, M. A., Amonsilpa, S. A., Collins, F. C., and Wells, B. R. (1990). Plant Height vs. Mesocotyl and Celeoptile Elongation in Rice: Linkage or Pleitropism? Crop Science, 30(4):815.
Ellstrand, N. C., Heredia, S. M., Leak-Garcia, J. A., Heraty, J. M., Burger, J. C., Yao, L., Nohzadeh-Malakshah, S., and Ridley, C. E. (2010). Crops gone wild: evolution of weeds and invasives from domesticated ancestors: Evolution of weeds and invasives from domesticates. Evolutionary Applications, 3(5-6):494–504.
Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. The Plant Genome Journal, 4(3):250.
Endelman, J. B. and Jannink, J.-L. (2012). Shrinkage Estimation of the Realized Rela- tionship Matrix. G3:Genes|Genomes|Genetics, 2(11):1405–1413.
Furukawa, T., Maekawa, M., Oki, T., Suda, I., Iida, S., Shimada, H., Takamure, I., and Kadowaki, K.-i. (2006). The Rc and Rd genes are involved in proanthocyanidin synthe- sis in rice pericarp: Rc and Rd genes for red rice seed. The Plant Journal, 49(1):91–102.
Furuta, T., Komeda, N., Asano, K., Uehara, K., Gamuyao, R., Angeles-Shim, R. B., Nagai, K., Doi, K., Wang, D. R., Yasui, H., Yoshimura, A., Wu, J., McCouch, S. R., and Ashikari, M. (2015). Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci. G3:Genes|Genomes|Genetics, 5(11):2267–2274.
Gross, B. L., Reagon, M., Hsu, S.-C., Caicedo, A. L., Jia, Y., and Olsen, K. M. (2010). Seeing red: the origin of grain pigmentation in US weedy rice: EVOLUTION OF GRAIN COLOUR IN US RED RICE. Molecular Ecology, 19(16):3380–3393.
Gu, B., Zhou, T., Luo, J., Liu, H., Wang, Y., Shangguan, Y., Zhu, J., Li, Y., Sang, T., Wang, Z., and Han, B. (2015). An-2 Encodes a Cytokinin Synthesis Enzyme that Regulates Awn Length and Grain Production in Rice. Molecular Plant, 8(11):1635–1650.
Gu, X.-Y., Foley, M. E., Horvath, D. P., Anderson, J. V., Feng, J., Zhang, L., Mowry, C. R., Ye, H., Suttle, J. C., Kadowaki, K.-i., and Chen, Z. (2011). Association Between Seed Dormancy and Pericarp Color Is Controlled by a Pleiotropic Gene That Regulates Abscisic Acid and Flavonoid Synthesis in Weedy Red Rice. Genetics, 189(4):1515– 1524.
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., Huang, T., Zhou, T., Jing, Y., Li, W., Lin, Z., Buckler, E. S., Qian, Q., Zhang, Q.-F., Li, J., and Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11):961–967.
Huang, Z., Kelly, S., Matsuo, R., Li, L.-F., Li, Y., Olsen, K. M., Jia, Y., and Caicedo, A. L. (2018). The Role of Standing Variation in the Evolution of Weedines Traits in South Asian Weedy Rice ( Oryza spp.). G3:Genes|Genomes|Genetics, 8(11):3679–3690.
Jia, Y. and Gealy, D. (2018). Weedy red rice has novel sources of resistance to biotic stress. The Crop Journal, 6(5):443–450.
Kahn, S. D. (2011). On the Future of Genomic Data. Science, 331(6018):728–729.
Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S., Childs, K. L., Davidson, R. M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S. S., Kim, J., Numa, H., Itoh, T., Buell, C. R., and Matsumoto, T. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6(1):4.
Kinjo, S., Monma, N., Misu, S., Kitamura, N., Imoto, J., Yoshitake, K., Gojobori, T., and Ikeo, K. (2018). Maser: one-stop platform for NGS big data from analysis to visualization. Database, 2018.
Korte, A. and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1):29.
Li, C. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769):1936– 1939.
Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics, 25(14):1754–1760.
Li, L.-F., Li, Y.-L., Jia, Y., Caicedo, A. L., and Olsen, K. M. (2017). Signatures of adaptation in the weedy rice genome. Nature Genetics, 49(5):811–814.
Li, Y.-h., Liu, B., Reif, J. C., Liu, Y.-l., Li, H.-h., Chang, R.-z., and Qiu, L.-j. u. (2014). Development of Insertion and Deletion Markers based on Biparental Resequencing for Fine Mapping Seed Weight in Soybean. The Plant Genome, 7(3):0.
Lin, Z., Griffith, M. E., Li, X., Zhu, Z., Tan, L., Fu, Y., Zhang, W., Wang, X., Xie, D., and Sun, C. (2007). Origin of seed shattering in rice (Oryza sativa L.). Planta, 226(1):11– 20.
Liu, X., Huang, M., Fan, B., Buckler, E. S., and Zhang, Z. (2016). Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Associa- tion Studies. PLOS Genetics, 12(2):e1005767.
Londo, J. P. and Schaal, B. A. (2007). Origins and population genetics of weedy red rice in the USA: ORIGINS OF US WEEDY RED RICE. Molecular Ecology, 16(21):4523– 4535.
Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., Zhao, Q., Wang, A., Wang, Z., Sang, T., Wang, Z., and Han, B. (2013). An-1 Encodes a Basic Helix-Loop-Helix Protein That Regulates Awn Development, Grain Size, and Grain Number in Rice. The Plant Cell, 25(9):3360–3376.
Lü, Y., Cui, X., Li, R., Huang, P., Zong, J., Yao, D., Li, G., Zhang, D., and Yuan, Z. (2015). Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform: Graphic pipeline platform for InDel markers. Journal of Integrative Plant Biology, 57(11):980–991.
Mansueto, L., Fuentes, R. R., Chebotarov, D., Borja, F. N., Detras, J., Abriol-Santos, J. M., Palis, K., Poliakov, A., Dubchak, I., Solovyev, V., Hamilton, R. S., McNally, K. L., Alexandrov, N., and Mauleon, R. (2016). SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa. Current Plant Biology, 7- 8:16–25.
Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., and Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Qual- ity control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2):e1608.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9):1297–1303.
McNally, K. L., Childs, K. L., Bohnert, R., Davidson, R. M., Zhao, K., Ulat, V. J., Zeller, G., Clark, R. M., Hoen, D. R., Bureau, T. E., Stokowski, R., Ballinger, D. G., Frazer, K. A., Cox, D. R., Padhukasahasram, B., Bustamante, C. D., Weigel, D., Mackill, D. J., Bruskiewich, R. M., Ratsch, G., Buell, C. R., Leung, H., and Leach, J. E. (2009).
Genomewide SNP variation reveals relationships among landraces and modern vari- eties of rice. Proceedings of the National Academy of Sciences, 106(30):12273–12278.
Merotto, A., Goulart, I. C. G. R., Nunes, A. L., Kalsing, A., Markus, C., Menezes, V. G., and Wander, A. E. (2016). Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil. Evolutionary Applications, 9(7):837–846.
Meyer, R. S. and Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14(12):840–852.
Miao, C., Yang, J., and Schnable, J. C. (2019). Optimising the identification of causal variants across varying genetic architectures in crops. Plant Biotechnology Journal, 17(5):893–905.
Misra, G., Badoni, S., Anacleto, R., Graner, A., Alexandrov, N., and Sreenivasulu, N. (2017). Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice. Scientific Reports, 7(1).
Nadir, S., Xiong, H.-B., Zhu, Q., Zhang, X.-L., Xu, H.-Y., Li, J., Dongchen, W., Henry, D., Guo, X.-Q., Khan, S., Suh, H.-S., Lee, D. S., and Chen, L.-J. (2017). Weedy rice in sustainable rice production. A review. Agronomy for Sustainable Development, 37(5).
Olsen, K. M., Caicedo, A. L., and Jia, Y. (2007). Evolutionary Genomics of Weedy Rice in the USA. Journal of Integrative Plant Biology, 49(6):811–816.
Perera, U., Senanayake, S., and Ratnasekera, W. (2012). MORPHOLOGICAL DIVER- SITY OF WEEDY RICE ACCESSIONS COLLECTED IN AMPARA DISTRICT. Proceedings of International Forestry and Environment Symposium, 15(0).
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., and Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3):559–575.
Qiu, J., Zhou, Y., Mao, L., Ye, C., Wang, W., Zhang, J., Yu, Y., Fu, F., Wang, Y., Qian, F., Qi, T., Wu, S., Sultana, M. H., Cao, Y.-N., Wang, Y., Timko, M. P., Ge, S., Fan, L., and Lu, Y. (2017). Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature Communications, 8(1).
Redoña, E. D. and Mackill, D. J. (1996). Genetic Variation for Seedling Vigor Traits in Rice. Crop Science, 36(2):285.
Regan, K., Siddique, K., Turner, N., and Whan, B. (1992). Potential for increasing early vigour and total biomass in spring wheat. II. Characteristics associated with early vigour. Australian Journal of Agricultural Research, 43(3):541.
Rodenburg, J. (2008). BOOK REVIEWS - Weedy Rices –Origin, Biology, Ecology and Control. FAO Plant Production and Protection Paper 188. By J. C. Delouche, N. R. Burgos, D. R. Gealy, G. Zorrilla de San Martin and R. Labrada. Rome: Food and Agriculture Organization of the United Nations (FAO), pp. 144, US$32.00. ISBN 978- 92-5-105676-9. Experimental Agriculture, 44(2):276–276.
Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto, M., Abe, T., Yamada, Y., Muto, A., Inokuchi, H., Ikemura, T., Mat- sumoto, T., Sasaki, T., and Itoh, T. (2013). Rice Annotation Project Database (RAP- DB): An Integrative and Interactive Database for Rice Genomics. Plant and Cell Phys- iology, 54(2):e6–e6.
Shen, X., Liu, Z.-Q., Mocoeur, A., Xia, Y., and Jing, H.-C. (2015). PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theoretical and Applied Genetics, 128(4):623–637.
Shivrain, V. K., Burgos, N. R., Agrama, H. A., Lawton-Rauh, A., Lu, B., Sales, M. A., Boyett, V., Gealy, D. R., and Moldenhauer, K. A. K. (2010). Genetic diversity of weedy red rice (Oryza sativa) in Arkansas, USA: Red rice genetic diversity. Weed Research, pages no–no.
Singh, N., Singh, B., Rai, V., Sidhu, S., Singh, A. K., and Singh, N. K. (2017). Evo- lutionary Insights Based on SNP Haplotypes of Red Pericarp, Grain Size and Starch Synthase Genes in Wild and Cultivated Rice. Frontiers in Plant Science, 8.
Song, B., Mott, R., and Gan, X. (2018). Recovery of novel association loci in Arabidop- sis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test. PLOS Genetics, 14(10):e1007699.
Song, B.-K., Chuah, T.-S., Tam, S. M., and Olsen, K. M. (2014). Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia. Molecular Ecology, 23(20):5003–5017.
Sun, J., Ma, D., Tang, L., Zhao, M., Zhang, G., Wang, W., Song, J., Li, X., Liu, Z., Zhang, W., Xu, Q., Zhou, Y., Wu, J., Yamamoto, T., Dai, F., Lei, Y., Li, S., Zhou, G., Zheng, H., Xu, Z., and Chen, W. (2019). Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy Rice as an Evolutionary Game. Molecular Plant, 12(5):632–647.
Sun, J., Qian, Q., Ma, D.-R., Xu, Z.-J., Liu, D., Du, H.-B., and Chen, W.-F. (2013). Introgression and selection shaping the genome and adaptive loci of weedy rice in northern China. New Phytologist, 197(1):290–299.
Sweeney, M. T., Thomson, M. J., Pfeil, B. E., and McCouch, S. (2006). Caught Red- Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in Rice. The Plant Cell, 18(2):283–294.
Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., and Conesa, A. (2011). Differen- tial expression in RNA-seq: A matter of depth. Genome Research, 21(12):2213–2223.
The 3,000 rice genomes project (2014). The 3,000 rice genomes project. GigaScience, 3(1).
Tian, C., Gregersen, P. K., and Seldin, M. F. (2008). Accounting for ancestry: popula- tion substructure and genome-wide association studies. Human Molecular Genetics, 17(R2):R143–R150.
Varshney, R. K., Terauchi, R., and McCouch, S. R. (2014). Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biology, 12(6):e1001883.
Vigueira, C. C., Qi, X., Song, B., Li, L., Caicedo, A. L., Jia, Y., and Olsen, K. M. (2019). Call of the wild rice: Oryza rufipogon shapes weedy rice evolution in Southeast Asia. Evolutionary Applications, 12(1):93–104.
Wang, C.-H., Zheng, X.-M., Xu, Q., Yuan, X.-P., Huang, L., Zhou, H.-F., Wei, X.-H., and Ge, S. (2014a). Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity, 112(5):489–496.
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R. R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K. C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., Zhao, X., Shen, F., Cui, X., Yu, H., Li, Z., Chen, M., Detras, J., Zhou, Y., Zhang, X., Zhao, Y., Kudrna, D., Wang, C., Li, R., Jia, B., Lu, J., He, X., Dong, Z., Xu, J., Li, Y., Wang, M., Shi, J., Li, J., Zhang, D., Lee, S., Hu, W., Poliakov, A., Dubchak, I., Ulat, V. J., Borja, F. N., Mendoza, J. R., Ali, J., Li, J., Gao, Q., Niu, Y., Yue, Z., Naredo, M. E. B., Talag, J., Wang, X., Li, J., Fang, X., Yin, Y., Glaszmann, J.-C., Zhang, J., Li, J., Hamilton, R. S., Wing, R. A., Ruan, J., Zhang, G., Wei, C., Alexandrov, N., McNally, K. L., Li, Z., and Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703):43–49.
Wang, Y., Lu, J., Chen, S., Shu, L., Palmer, R. G., Xing, G., Li, Y., Yang, S., Yu, D., Zhao, T., and Gai, J. (2014b). Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome: Polymorphic presence/absence variation marker database. Journal of Integrative Plant Biology, 56(10):1009–1019.
Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J., and Wang, W. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1):105–111.
Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: A Tool for Genome-wide Complex Trait Analysis. The American Journal of Human Genetics, 88(1):76–82.
Zhang, L.-B., Zhu, Q., Wu, Z.-Q., Ross-Ibarra, J., Gaut, B. S., Ge, S., and Sang, T. (2009). Selection on grain shattering genes and rates of rice domestication. New Phytologist, 184(3):708–720.
Zhang, X., Zong, J., Liu, J., Yin, J., and Zhang, D. (2010). Genome-Wide Analysis of WOX Gene Family in Rice, Sorghum, Maize, Arabidopsis and Poplar. Journal of Integrative Plant Biology, 52(11):1016–1026.
Zhang, Y., Zhang, Z., Sun, X., Zhu, X., Li, B., Li, J., Guo, H., Chen, C., Pan, Y., Liang, Y., Xu, Z., Zhang, H., and Li, Z. (2019). Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica. Plant Biotechnology Journal.
Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., and McCouch, S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2(1).
Zhou, H., Li, P., Xie, W., Hussain, S., Li, Y., Xia, D., Zhao, H., Sun, S., Chen, J., Ye, H., Hou, J., Zhao, D., Gao, G., Zhang, Q., Wang, G., Lian, X., Xiao, J., Yu, S., Li, X., and He, Y. (2017a). Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Molecular Plant, 10(4):634–644.
Zhou, S., Jiang, W., Long, F., Cheng, S., Yang, W., Zhao, Y., and Zhou, D.-X. (2017b). Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem. The Plant Cell, 29(5):1088–1104.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73693-
dc.description.abstract栽培稻 (Oryza sativa L.) 是在馴化過程中歷經人為選拔而逐漸演變成為現今世界上最重要的糧食作物之一。然而,作為同ㄧ生物種而言,雜草稻似乎在演化過程中選擇有別於栽培稻馴化的道路,一般也被稱為去馴化 (de-domestication)。雜草稻在外觀特性上時常具有較長的芒、較高的落粒性以及紅色種皮,對世界許多產稻國家造成重大危害。本研究利用一些主要區分雜草稻與栽培稻的性狀分析其背後的遺傳結構,進而了解這些雜草化性狀在(去)馴化過程中所扮演的角色。透過3,000水稻基因體計劃 (3K Rice Genome Project) 的公開資料,我們針對1,378個來自不同次族群的水稻品系的五個性狀(芒的顏色、種皮顏色、落粒性、脫粒性以及株高)進行全基因體關聯性分析(Genome-Wide Association Studies)並且找到一些與目標相關之變異。水稻種皮顏色主要由已知的 Rc 基因在不同次族群內的對偶基因所調控,而與水稻中芒的有無相關之變異則分屬各次族群間特有。在利用雜草稻資料來交叉驗證在水稻 3K 資料庫中所獲得之顯著位點後,我們發現栽培稻與雜草稻中調控芒的基因不盡相同。本研究之結果表明了去馴化性狀的複雜性可能是導致栽培稻與雜草稻中觀察到相異結果的主要原因。zh_TW
dc.description.abstractRice (Oryza sativa L.) had gone through the process of domestication under human selection and became one of the most important staple crops around the world. Weedy rice, the conspecific counterpart of cultivated rice, seems to have escaped domestication for another rapid evolutionary process, also known as the de-domestication. Weedy rice is commonly characterized by long awn, shattering panicles and red pericarp and causes great damages in rice producing countries. This study focused on traits that mainly differed weedy rice from cultivated rice in order to dissect the genetic architecture underlied which may help in a better understanding of the role of 'weedy' traits during (de)-domestication process. We used publicly available data from the 3K Rice Genome Project (3K RGP) and have conducted genome- wide association studies (GWAS) on a subset of 1,378 accessions, selected based on sub-populations. We focused on awn color, pericarp color, panicle shattering degree, panicle threshability and seedling height. Several variants associated to target traits were identified. Pericarp color was mainly regulated by the well established Rc gene and varied among sub- populations. Variants associated with awn presence/absence appeared to be sub-population specific. We cross-checked significant variants identified in 3K RGP using data from weedy rice and found that different genes seemed to be involved in the control of awn presence/absence. Our results suggests that the complexity of de-domestication traits might account for the discrepancy observed between weedy rice and cultivated rice.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:08:11Z (GMT). No. of bitstreams: 1
ntu-108-R05621120-1.pdf: 17646496 bytes, checksum: 05f2cc140dcde2b18f3612d66add856e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
Abstract iii
1. Introduction 1
2. Methods 5
2.1 Source data 5
2.1.1 Rice 3K 5
2.1.2 Weedy rice 6
2.2 Population structure and linkage disequilibrium 6
2.3 Genome-Wide Association Study(GWAS) 7
2.4 Cross-validation of associated SNP 8
3 Results 9
3.1 Population structure and LD analysis 9
3.2 Trait distribution 10
3.3 GWAS 11
3.4 Awnpresence/absence in weedy rice 14
4 Discussion 15
5 Conclusion 19
Bibliography 51
dc.language.isoen
dc.title利用水稻 3K 資料庫探勘雜草化性狀的遺傳組成zh_TW
dc.titleExplore Weedy Traits Genetics Through Rice 3K Databaseen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邢禹依,董致韡,吳東鴻
dc.subject.keyword3,000 水稻基因體計劃,全基因體關聯性分析,馴化,去馴化,雜草稻,zh_TW
dc.subject.keyword3K Rice Genome Project (3K RGP),genome-wide association study (GWAS),domestication,de-domestication,weedy rice,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201903129
dc.rights.note有償授權
dc.date.accepted2019-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
17.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved