請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73684
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
dc.contributor.author | Yuan-Chiann Loo | en |
dc.contributor.author | 呂旋駗 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:01Z | - |
dc.date.available | 2022-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-18 | |
dc.identifier.citation | 于舜章、陳雨海、周勛波、李全起、羅毅、于强. 2004. 冬小麥期覆蓋秸稈對夏玉米土壤水分動態變化及產量的影響. 水土保持學報. 175-178.
王貴彥、史秀棒、張建恆、梁衛理. 2000. TDR法、中子法、重量法測定土壤含水量的比較研究. 河北農業大學學報. 23:3. 王静、秦俊、高凯、胡永红. 2010. 冬夏季桂花凈光合速率及其對環境因子的響應. 生態環境學報. 19:908-912. 艾群. 2010. 農業生產節水技術與系統研發, p21-37. 農業工程與節能減碳學術研討會專刊. 行政院農業委員會農業試驗所編印, 臺中, 臺灣. 行政院農業委員會. 2016. 臺灣硬質玉米栽培管理技術. 臺南區農業改良場技術專刊. 163. 行政院農業委員會. 2017. 106年農業統計年報. 臺北. 臺灣. 21-57. 行政院農業委員會. 2017. 農產品生產面積統計. 農業統計資料查詢. <http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx> 行政院農業委員會. 2017. 農產品生產值統計. 農業統計資料查詢. <http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx> 行政院水利署. 2017. 水資源運用實況. <https://www.wra.gov.tw/media/27074/t1.pdf> 行政院水利署. 2019. 第一篇106年各標的用水統計年報. <http://wuss.wra.gov.tw/annualreports/201900244- %E7%AC%AC%E5%9B%9B%E7%AF%87%20%E5%8F%B0%E7%81%A3%E5%9C%B0%E5%8D%80%E6%B0%91%E5%9C%8B106%E5%B9%B4%E8%BE%B2%E6%A5%AD%E7%94%A8%E6%B0%B4%E9%87%8F%E7%B5%B1%E8%A8%88%E5%A0%B1%E5%91%8A.pdf> 李志紅、劉宏斌、張福鎖. 應用葉綠素儀診斷冬小麥氮營養狀況的研究. 作物營養與肥料學報 9:401-405. 李建科、張偉玉、楊靜慧、劉艷軍、嚴俊、張雷. 幾種野生菊科植物含油量和抗旱性初探. 南方農業 1:18-20. 林凡暐. 2019. 甜菜鹼與幾丁質對萵苣和玉米水分利用效率之影響. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 林棟樑. 2005. 萵苣.台灣農家要覽. 增修訂三版. 農作篇(二) 409-419. 徐坤、康立美、趙紅軍、劉振軍. 1995. 結球萵苣光合特性研究. 園藝學報 22(4):363-366. 陳炫、范武波、范武平、吳育強. 2013. 現代高效節水農業技術研究進展. 現代農業科技 16:199-199. 陳家宙、陳明亮、何圓球. 2001. 各具特色的當代土壤水分測量技術. 湖北農業科學 3:25-28. 陳映榕. 2017. 提升蔬菜作物水分利用效率之灌溉方法. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 劉秀秀、馮小亮、呂東波. 2017. 生物刺激素在農業中的應用現狀及發展前景. 南方農業 11:88-89 劉秀連. 2016. 現代節水農業技術的發展. 農業工程技術 8:29. 楊田甜和申繼忠. 2016. 植物生物刺激劑簡介. 中國農藥 12:62-66. 謝明憲、楊藹華、王仕賢. 2013. 節水灌溉主要過濾設備及組配模式. 臺南區農業專訊 86:7-13. Abu-Muriefah, S.S. 2013. Effect of chitosan on common bean (Phaseolus vulgaris L.)plants grown under water stress conditions. Intl. Res. J. Agr. Sci. Soil Sci. 3:192-199. Acar, B., M. Paksoy, O. Turkmen, M. Seymen. 2008. Irrigation and nitrogen level affect lettuce yield in greenhouse condition. African J. Biotechnol. 7:4450-4453 Adeyemi, O., I. Grove, S. Peets, Y. Domun, and T. Norton. 2018. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Computers Electronics Agr. 153:102-114. Ahmadi, S.H., M.N. Andersen, F. Plauborg, R.T. Poulsen, C.R. Jensen, A.R. Sepaskhah, and S. Hansen. 2010. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agri. Water Mgt. 97:1923-1930. Allen, L.H., D. Pan, K.J. Boote, N.B. Pickering, and J.W. Jones. 2003. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean. Agron. J. 95:1071-1081. Antony, E., and Singandhupe, R. B. 2004. Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.). Agr. Water Mgt. 65:121-132. Ayars, J. E., C.J. Phene, R.B. Hutmacher, K.R. Davis, R.A. Schoneman, S.S. Vail, and R. M. Mead. 1999. Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agr. Water Mgt. 42:1-27. Barka, E. A., Eullaffroy, P., Clément, C., and Vernet, G. 2004. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports. 22:608-614. Bautista-Banos, S., M. Hernandez-Lopez, E. Bosquez-Molina, and C.L. Wilson. 2003. Effect of chitosan and plant extract on growth of Colletotrichum gloesporioides, anthracnose levels and quality of papaya fruit. Crop Protection. 22:1087-1092. Billard, V., P. Etienne, L. Jannin, M. Garnica, F. Cruz, J.-M. Garcia-Mina, J.-C. Yvin, and A. Ourry. 2014. Two Biostimulants Derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J. Plant Growth Regulation 33:305-316. Bittelli, M., M. Flury, G.S. Campbell, and E.J. Nichols. 2001. Reduction of transpiration through foliar application of chitosan. Agr. Forest Meteorology. 107:167-175. Biostimulant Coalition. 2013. What are biostimulants? http://www.biostimulantcoalition.org/about/ Bos, M.G., and Nugteren, J. 1974. On Irrigation Efficiencies. Wageningen: International Institute for Land Reclamation and Improvement. 19. Bozkurt, S., and G.S. Bozkurt. 2011. The effects of drip line depths and irrigation levels on yield,quality and water use characteristics of lettuce under greenhouse condition. African J. Biotechnol. 10:3370-3379. Bozkurt, S., G. S. Mansuroğlu, M. Kara and S. Onder. 2009. Responses of lettuce to irrigation levels and nitrogen forms. African J. Agr. Res. 4:1171-1177. Brown, P., S. Saa. 2015. Biostimulants in agriculture. Frontiers in plant science. 6:671. Catoni, R., L. Gratani, and L. Varone. 2012. Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species. Flora- Morphology Distrib. Functional Ecol. Plants. 207:442-449. Capra, A., S. Consoli, A. Russo, and B. Scicolone. 2008. Integrated agro-economic approach to deficit irrigation on lettuce crops in Sicily (Italy). J. Irr. Drainage Eng. 134:437-445. Chai, Q., Y. Gan, N.C. Turner, R.Z. Zhao, C. Yang, Y. Niu, and K.H.M. Siddique. 2014. Water-saving innovations in Chinese agriculture. In Adv. in Agron. 126:147-201. Chai, Q., Y. Gan, C. Zhao, H.L. Xu, R.M. Waskom, Y. Niu, and K.H.M. Siddique. 2015. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36:3. Chai, Q., Y. Gan, C. Zhao, H.L. Xu, R.M. Waskom, Y. Niu, and K.H.M. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36:3. Chung, Y.C., and C.Y. Chen. 2008. Antibacterial charateristics and activity of acid-soluble chitosan. Bioresource Technol. 99:2806-2814. Clifton-Brown, J.C. and I. Lewandowski. 2000. Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply. Ann. Bot. 86:191-200. Dagdelen, N., E. Yılmaz, F. Sezgin, and T. Guruz. 2006. Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agri. Water Mgt. 82:63-85. Dobbelaere, S., A. Croonenborghs, A. Thys, A.V. Broek, and J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155-164. Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae. 196:3-14. Dye, P.J. 2000. Water use efficiency in south African Eucalyptus plantations: a review. Southern African Forestry J. 189(1):17-26. Dzung, N.A., V.T.P. Khanh, and T.T. Dzung. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers. 84:751-755. El Hadrami, A., L. Adam, I. El Hadrami, and F. Daayf. 2010. Chitosan in plant protection. Marine Drugs 8:968-987. Ertani, A., M. Schiavon, A. Muscolo, and S. Nardi. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364:145-158. Ertek, A., and B. Kara. 2013. Yield and quality of sweet corn under deficit irrigation. Agr. Water Mgt. 129:138-144. FAO. 2014. The water-energy-food nexus:a new approach in support of food security and sustainable agriculture. Rome:Food and Agriculture organization of the United Nations and London, Earthscan. Farouk, S., A.A. Mosa, A.A. Taha, H.M. Ibrahim, A.M. EL-Gahmery. 2011. Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium. J. Stress Physiol. Biochem. 7:99-116. Farouk, S., and A.R. Amany. 2012. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology. 14(1):14-16. Fernandes, T.J.G., A.D.D. Campo, R. Herrera, and A.J. Molina. 2016. Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. Forest Ecol. Mgt. 361:298-308. Fischer, R.A., and N.C. Turner. 1978. Plamt productivity in the arid and semiarid zones. Annu. Rev. Plant Physiol. 29:277-317. Ghoname, A. A., El-Nemr, M. A., Abdel-Mawgoud, A. M. R., and El-Tohamy, W. A. 2010. Enhancement of sweet pepper crop growth and production by application of biological, organic and nutritional solutions. Res. J. Agric. Biol. Sci. 6:349-355. Guan, Y., J. Hu, X. Wang, and C. Shao. 2009. Seed priming with chitosan improves maize germination and seeding growth in relation to physiological change under low temperature stress. J. Zhejiang University Science B. 10:427-433. Hadwiger, L.A. 2013. Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci. 208:42-49. Hamed Y., G. Samy, and M. Persson. 2006. Evaluation of the WET senser compared to time domain reflectometry. Hydrological sciences. 51:671-681. Hanson B., and D. May. 2004. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agr. Water Mgt. 68:1–17. Howell, T.A. 2003. Irrigation efficiency. Encyclopedia of Water Science. Marcel Dekker, New York. 467-472. Hubbard, R.M., J. Stape, M.G. Ryan, A.C. Almeida, and J. Rojas. 2010 Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management. 259(9):1714-1721. Jindo, K., S.A. Martim, E.C. Navarro, N.O. Aguiar, and L.P. Canellas. 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209-220. Kang, S., W. Shi, and J. Zhang. 2000. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crop. Res. 67:207-214. Karam, F., O. Mounzer, F. Sarkis, and R. Lahoud. 2002. Yield and nitrogen recovery of lettuce under different irrigation regimes. J. Appl. Hort. 4:70-76. Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J. Plant Physiol. 20:1-9. Kauffman, G.L., D.P. Kneivel, and T.L. Watschke. 2007. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci. 47:261-267. Khan, W.M., B. Prithiviraj, and D.L. Smith. 2002. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthetica. 40(4):621-624. Kim, H.J., F.Chen, X. Wang, and C.Rajapakse. 2005. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agr. Food Chem. 53:3696-3701. Kirnak, H. and M.N. Demirtas. 2006. Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditiona. J. Plant Nutr. 29:1675-1690. Kumar, A., D.P. Singh, and P. Singh. 1994. Influence of water stress on photosynthesis, transpiration, water use effiensy and yield of Brassica juncea L.. Field Crops Res. 37:95-101. Kuscu, H., A. Turhan, and A.O. Demir. 2014. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agr. Water Mgt. 133:92-103. Kusakabe, A., B.A. Contreras-Barragan, C.R. Simpson, J.M. Enciso, S.D. Nelson, J.C. Melgar. 2016. Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees. Agr. Water Mgt. 178:66-75. Lament, W.J. 1993. Plastic mulches for the production of vegetable crops. HortTechnology. 3.1:35-39. Liu, F., C.R. Jensen, A. Shahnazari, M.N. Andersen, and S.E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberrosum L.) during progressive soil drying. Plant Sci. 186:831-836. Liu, F., A. Shahnazari, M.N. Andersen, S.E. Jacobsen, and C.R. Jensen. 2006. Physiological responses of potato (Solanum tuberrosum L.) to partial root-zone drying: ABA signaling, leaf gas exchange, and water use efficiency. J. Expt Bot. 57:3727-3735. Liu, Y., S.J. Yang, W. Hu, and X.P. Chen. 2010. Diurnal and seasonal soil CO2 flux patterns in spring maize fields on the Loess Plateau, China. Acta Agriculturae Scandinavica Section B–Soil Plant Sci. 60:245-255. Liu, F., and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic. 102:15-27. Lorenz, O.A., and D.N. Maynard. 1980. Knott's handbook for vegetable growers. John Wiley & Sons. Mondal, M. M. A., M.A. Malek, A.B. Puteh, M.R. Ismail, M. Ashrafuzzaman, and L. Naher. 2012. Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science. 6(5):918. Mondal, M. M. A., Malek, M. A., Puteh, A. B., and Ismail, M. R. 2013. Foliar application of chitosan on growth and yield attributes of mungbean (Vigna radiata (L.) Wilczek). Bangladesh Journal of Botany. 42:179-183. Monaghan, J.M., L.H. Vickers, I.G. Grove, A.M. Beacham. 2017. Deficit irrigation reduces postharvest rib pinking in wholehead lceberg lettuce, but at the expense of head fresh weight. J. Sci. Food Agr. 97:1524-1528. Mupangwa, W., S. Twomlow, S. Walker, and L. Hove. 2007. Effect of minimum tillage and mulching on maize (Zea mays L.) yield and water content of clayey and sandy soils. Physics and chemistry of the earth, parts A/B/C. 32(15-18): 1127-1134. Najafi, P., and S.H. Tabatabaei. 2007. Effect of using subsurface drip irrigation and ET-HS model to increase WUE in irrigation of some crops. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage. 56:477-486. Niu, S., G. Jiang, S. Wan, Y. Li, L. Gao, and M. Liu. 2006. A sand-fixing pioneer C3 species in sandland displays characteristics of C4 metabolism. Environ. Expt. Bot. 57:123-130. Oh, M., E.E. Carey, and C.B. Rajashekar. 2010. Regulated water deficit improve phytochemical concentration in lettuce. Journal of the American Society for Hort. Sci. 135:223-229. Ohta, K., A. Taniguchi, N. Konishi, and T. Hosoki. 1999. Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience. 34(2):233-234. Otegui, M. E., F. H. Andrade, and E.E. Suero. 1995. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res. 40:87-94. Pandey, R. K., J. W. Maranville, and A. Admou. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components. Agr. Water Mgt. 46:1-13. Pichyangkura, R., and S. Chadchawan. 2015. Biostimulant activity of chitosan in horticulture. Scientia Horticulturae. 196:49-65. Pilon-Smits, E.A.H., C.F. Quinn, W. Tapken, M. Malagoli, and M. Schiavon. 2009. Physiological functions of beneficial elements. Current Opinion Plant Biol. 12:267-274. Radovich, T.J., M.D. Kleinhenz, and J.G. Streeter. 2005. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J. Amer. Soc. Hort. Sci. 130:943-949. Ramakrishna, A., H.M. Tam, S.P. Wani, and T.D. Long. 2006. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95:115-125. Rawson, H.M., J.E. Begg, and R.G. Woodward. 1977. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta. 134:5-10. Sammis, T.W., B.A. Kratky, and I.P. Wu. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irr. Sci. 9:187-198. Shao, G. C., Z. Y. Zhang, N. Liu, S. E. Yu, and W. G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hort. 119:11-16. Silva, W. O., N.P. Stamford, E.V. Silva, C.E. Santos, A.D.S. Freitas, and M.V. Silva. 2016. The impact of biofertilizers with diazotrophic bacteria and fungi chitosan on melon characteristics and nutrient uptake as an alternative for conventional fertilizers. Scientia horticulturae. 209:236-240. Stanghellini, C., F.L.K. Kempkes, and P. Knies. 2003. Enhancing environmental quality in agricultural system. Acta Hort. 609:277-283. Stanhill, G. 1986. Water use efficiency. Adv. Agron. 39:53-85. Stone, P.J., D.R. Wilson, J.B. Reid and R.N. Gillespie. 2001. Water deficit effects on sweet corn. I. water use, radiation use efficiency, growth, and yield. Austral. J. Agri. Res. 52:103-113. Sustainable development goals. 2016. 6 Clean water and sanitation. <https://www.un.org/sustainabledevelopment/water-and-sanitation/> Vasconcelos, A. C. F. D., X. Zhang, E.H. Ervin, and J.D.C. Kiehl. 2009. Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Scientia Agricola. 66:395-402. Viets, F.G. 1962. Fertilizers and efficient use of water. Adv. Agron. Academic Press. 14:223-264. Wang, F.X., S.Y. Feng, X.Y. Hou, S.Z. Kang, and J.J. Han. 2009. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Res. 110:123-129. Wang, X.L., F.M. Li, Y. Jia, and W.Q. Shi. 2005. Increasing potato yields with additional water and increased soil temperature. Agr. Water Mgt. 78:181-194. Wang, Z., F. Liu, S. Kang, C.R. Jensen. 2012. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ. Expt. Bot. 75:36-40. Weber, N., V. Zupanc, J. Jakopic, M. Mikulic-Petkovsek, and F. Stampar. 2016. Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J. Sci Food Agr. 97:849-857. World economic forum. 2017. The global risks report 2017 12th edition. Geneva:World economic forum. Yin, H., X.M. Zhao, and Y.G. Du. 2010. Oligochitosan: a plant diseases vaccine-a review. Carbohydrate Polymers 82:1-8. Zhou, L.M., F.M. Li, S.L. Jin, and Y. Song. 2009. How two ridges and the furrow mulched with plastic film affect soil water,soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 113:41-47. Zhao, H., Y.C. Xiong, F.M. Li, R.Y. Wang, S.C. Qiang, T.F. Yao, and F. Mo. 2012. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agr. Water Mgt. 104:68-78 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73684 | - |
dc.description.abstract | 本研究以‘福山’萵苣(Lactuca sativa ‘Fu San’)及‘華珍’玉米 (Zea mays ‘Hua Chen’)作為材料進行調缺灌溉(Regulated deficit irrigation, RDI)以及在調缺灌溉下添加幾丁質(chitin)和殼聚糖(chitosan) ,評估其對植株生長和節水效益之影響。
在‘福山’萵苣調缺灌溉試驗方面,將‘福山’萵苣分為兩期,7-12片葉為前期,12-18片葉為後期,各別進行輕度缺水及中度缺水。‘華珍’玉米調缺灌溉試驗為將玉米分為營養生長期及生殖生長期,各別進行缺水處理。另外,‘福山’萵苣及‘華珍’玉米在調缺灌溉下添加2000 mg·L-1幾丁質、200 mg·L-1及400 mg·L-1藥用殼聚糖以及200 mg·L-1及400 mg·L-1商用殼聚糖(金甲讚)。 結果顯示:在夏季‘福山’萵苣前期輕度缺水及中度缺水處理後產量與對照組相比沒有減少,而且可以提高經濟產量水分利用效率(yield water-use efficiency, WUEyield) 及生物產量水分利用效率(biomass water-use efficiency, WUEbiomass),因此可以節省2.63%及21.05%的灌溉水量。在冬季‘福山’萵苣調缺灌溉處理組間皆無顯著差異,其中以後期中度缺水WUEyield 及WUEbiomass最高,可以節省28.63%的灌溉水量。玉米調缺灌溉處理後與對照組生長表現沒有顯著差異,但生殖生長期缺水處理WUEyield 及WUEbiomass最高,能節省40.10%的灌溉水量,其次為營養生長期缺水處理WUEyield 及WUEbiomass,能節省22.70%的灌溉水量。 在調缺灌溉下添加幾丁質及殼聚糖試驗結果顯示:‘福山’萵苣在鮮重及WUEyield方面,雖然調缺灌溉添加200 mg·L-1及400 mg·L-1藥用殼聚糖及金甲讚處理與調缺灌溉處理生長表現統計沒有顯著差異,但調缺灌溉添加200 mg·L-1殼聚糖及金甲讚處理有略佳的趨勢。調缺灌溉添加200 mg·L-1殼聚糖處理在乾重、株高、根長、葉片數、葉面積及WUEbiomass表現皆有較調缺灌溉添加2000 mg·L-1幾丁質處理及調缺灌溉添加200 mg·L-1金甲讚處理佳的趨勢。因此在調缺灌溉添加2000 mg·L-1幾丁質處理、調缺灌溉添加200 mg·L-1殼聚糖處理及金甲讚處理間,綜合表現較佳的為調缺灌溉添加200 mg·L-1殼聚糖處理。‘華珍’玉米鮮重、乾重、株高在調缺灌溉添加200 mg·L-1及400 mg·L-1藥用殼聚糖及金甲讚處理與調缺灌溉處理沒有顯著差異,但以經濟成本而言調缺灌溉添加200 mg·L-1殼聚糖及金甲讚處理會較佳。‘華珍’玉米在調缺灌溉添加2000 mg·L-1幾丁質處理、調缺灌溉添加200 mg·L-1殼聚糖及金甲讚處理的鮮重、乾重及株高皆與調缺灌溉處理生長表現統計沒有顯著差異。 雖然‘福山’萵苣於夏季進行調缺灌溉對提升作物水分利用效率較冬季顯著。冬季‘福山’萵苣及玉米調缺灌溉處理與對照組沒有顯著差異,表示在冬季‘福山’萵苣對缺水的敏感度下降,進而可以節省更多的水;另推測玉米為較耐乾旱作物,未來可以嘗試增加缺水強度,以節省更多的水,達到精準農業。本試驗結果雖顯示幾丁質或殼聚糖對‘福山’萵苣及‘華珍’玉米沒有顯著的節水效果,但品嚐口感較佳,推測幾丁質或殼聚糖可能會增加‘福山’萵苣及‘華珍’玉米的總可溶性之固形物,因此有待進一步深入探討。 | zh_TW |
dc.description.abstract | In this study, lettuce (Lactuca sativa ‘Fu San’) and corn (Zea mays 'Hua Chen') were used as materials for regulated deficit irrigation (RDI) and chitin and chitosan was added under regulated irrigation, evaluated for their effects on plant growth and water-saving benefits.
In the lettuce RDI experiment, the lettuce was divided into two phases, 7-12 leaves were in the early stage, and 12-18 leaves were in the late stage, with mild and moderate water deficit. In the corn RDI experiment, the corn was divided into vegetative stage and reproductive stage with water deficit. In addition, in the lettuce and corn supplemented experiment, lettuce and corn were supplemented with 2000 mg·L-1 chitin, 200 mg·L-1 and 400 mg·L-1 medicinal chitosan and commercial chitosan (JinJiaZan) under water deficit. The results showed that the yield of the mild and moderate water deficit treatment in the early stage of lettuce in summer was not reduced compared with the control group, and the yield water-use efficiency (WUEyield) and the biomass water-use efficiency (WUEbiomass) could be improved, thus saving 2.63% and 21.05% of the irrigation water. There was no significant difference in the treatment of lettuce in the winter. In the later stage, the moderate water deficit WUEyield and WUEbiomass, which could saved 28.63% of the irrigation water. There was no significant difference in growth between the control and the RDI treatment of corn, but reproductive stage water deficit were the highest WUEyield and WUEbiomass, which could save 40.10% of irrigation water, followed by the vegetative stage water deficit, which can save 22.70% of irrigation water. The results of the experiment of addition chitin and chitosan indicated (medicinal chitosan and commercial chitosan) under water deficit that lettuce was added with 200 mg·L-1 and 400 mg·L-1 medicinal chitosan and JinJiaZan in the treatment of fresh weight and WUEyield was no significant difference in the RDI treatment, but there was a better trend in the treatment of 200 mg·L-1 chitosan and Jinjiazan. The RDI addition of 200 mg·L-1 chitosan treatment of dry weight, plant height, root length, leaf number, leaf area and WUEbiomass were better trend then the treatment of RDI addition 2000 mg·L-1 chitin and RDI addition of 200 mg·L-1 JinJiaZan. Fresh weight, dry weight and plant height of corn were not significantly different between the treatment of RDI addition 200 mg·L-1 and 400 mg·L-1 chitosan and JinJiaZan treatment, but consider the economic efficiency RDI addition 200 mg·L-1 treatment is better. After that, the fresh weight, dry weight and plant height of corn treated with RDI addition 2000 mg·L-1 chitin and RDI addition 200 mg·L-1 chitosan and JinJiaZan were no significant differences in growth statistics. Although the lettuce was used to adjust the water use efficiency in the summer to improve the water use efficiency of crops compared with winter. There was no significant difference in the winter lettuce and corn RDI treatment test, indicating that the sensitivity of lettuce to water deficit in winter decreased, which in turn could save more water, and it was also speculated that corn was more resistant to drought. In the future, we can try to increase the water deficit intensity to save more water and achieve precision agriculture. Although the results of this test showed that chitin or chitosan lettuce and corn did not have significant by water saving effect on lettuce and corn, but the taste is better, it is speculated that chitin or chitosan may increase the total soluble solids of lettuce and corn, so it needs further exploration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:01Z (GMT). No. of bitstreams: 1 ntu-108-R06628213-1.pdf: 2405279 bytes, checksum: c6e52cff4a68fbeec4d0f8c5ddeda90b (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 圖目錄 vi 表目录 viii 第一章 前言(Introduction) 1 第二章 前人研究(Literature Review) 3 一、水分利用效率指標及影響因子 3 二、提高水分利用效率灌溉方式 5 第三章 不同程度調缺灌溉及時期對萵苣及玉米之影響 12 一、前言 (Introduction) 13 二、 材料與方法(Material and Methods) 13 三、 結果(Result) 21 四、 討論(Discussion) 26 五、 結論(Conclusion) 29 第四章 藥用及商用生物刺激劑對萵苣及玉米之影響 60 一、 前言(Introduction) 61 二、 材料與方法(Material and Methods) 61 三、 結果(Result) 67 四、 討論(Discussion) 75 五、 結論(Conclusion) 77 第五章 結論(Conclusion) 104 參考文獻(References) 106 附錄 118 | |
dc.language.iso | zh-TW | |
dc.title | 調缺灌溉及添加生物刺激劑對‘福山’萵苣及‘華珍’玉米生長之影響 | zh_TW |
dc.title | Effect of Regulated Deficit Irrigation and Biostimulants on the Growth of Lettuce ‘Fu San’ and Corn ‘Hua Chen’ | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅筱鳳,陳右人,朱玉 | |
dc.subject.keyword | 調缺灌溉,生物刺激劑,萵苣,玉米,節水, | zh_TW |
dc.subject.keyword | regulated deficit irrigation,biostimulant,lettuce,corn,water saving, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU201903962 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。