請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73683
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林峯輝(Feng-Huei Lin) | |
dc.contributor.author | Chih-Hsiang Fang | en |
dc.contributor.author | 方志翔 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:00Z | - |
dc.date.available | 2026-01-29 | |
dc.date.copyright | 2021-02-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-03 | |
dc.identifier.citation | 1. Newman, M.G., H.H. Takei, and F.n.A. Carranza, Carranza's clinical periodontology. 11th ed. 2012, St. Louis, Mo.: Elsevier/Saunders. xlv, 825 p. 2. Gulabivala, K. and Y. Ng, Tooth organogenesis, morphology and physiology. 2014. 3. Bath-Balogh, M., M.J. Fehrenbach, and P. Thomas, Illustrated dental embryology, histology, and anatomy. 2nd ed. 2006, St. Louis, Mo.: Elsevier Saunders. xi, 403 p. 4. Wolf, H.F., Periodontology. 3rd rev. and expanded ed. Color atlas of dental medicine. 2005, Stuttgart ; New York: Thieme ;. xi, 532 p. 5. Burr, D.B. and M.R. Allen, Basic and applied bone biology. 2013, Amsterdam: Elsevier/Academic Press. xv, 373 pages. 6. Kumar, P., B. Vinitha, and G. Fathima, Bone grafts in dentistry. J Pharm Bioallied Sci, 2013. 5(Suppl 1): p. S125-7. 7. Schropp, L., et al., Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. International Journal of Periodontics Restorative Dentistry, 2003. 23(4): p. 313-323. 8. Van der Weijden, F., F. Dell'Acqua, and D.E. Slot, Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. Journal of Clinical Periodontology, 2009. 36(12): p. 1048-1058. 9. Brownfield, L.A. and R.L. Weltman, Ridge Preservation With or Without an Osteoinductive Allograft: A Clinical, Radiographic, Micro-Computed Tomography, and Histologic Study Evaluating Dimensional Changes and New Bone Formation of the Alveolar Ridge. Journal of Periodontology, 2012. 83(5): p. 581-589. 10. Wang, H.L. and L. Boyapati, 'PASS' principles for predictable bone regeneration. Implant Dent, 2006. 15(1): p. 8-17. 11. Javed, A., H. Chen, and F.Y. Ghori, Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am, 2010. 22(3): p. 283-93, v. 12. Villar, C.C. and D.L. Cochran, Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am, 2010. 54(1): p. 73-92. 13. Zhao, S.J., et al., Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. Journal of Cranio-Maxillofacial Surgery, 2000. 28(2): p. 116-122. 14. Murphy, K.G. and J.C. Gunsolley, Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol, 2003. 8(1): p. 266-302. 15. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis, 2012. 8(4): p. 114-24. 16. Bhatt, R.A. and T.D. Rozental, Bone Graft Substitutes. Hand Clinics, 2012. 28(4): p. 457-+. 17. Goldberg, V.M., The biology of bone grafts. Orthopedics, 2003. 26(9): p. 923-4. 18. Khan, S.N., et al., The biology of bone grafting. Journal of the American Academy of Orthopaedic Surgeons, 2005. 13(1): p. 77-86. 19. Poitout, D.G., Biomechanics and biomaterials in orthopedics. 2004, London ; New York: Springer. xxiii, 654 p. 20. Urist, M.R., Bone: formation by autoinduction. 1965. Clin Orthop Relat Res, 2002(395): p. 4-10. 21. Cochran, D., et al., Position paper - Tissue banking of bone allografts used in periodontal regeneration. Journal of Periodontology, 2001. 72(6): p. 834-838. 22. Yildirim, M., et al., Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss (R) in combination with venous blood - A histologic and histomorphometric study in humans. Clinical Oral Implants Research, 2000. 11(3): p. 217-229. 23. Chambrone, L., et al., Effects of tobacco smoking on the survival rate of dental implants placed in areas of maxillary sinus floor augmentation: a systematic review. Clinical Oral Implants Research, 2014. 25(4): p. 408-416. 24. Felice, P., et al., Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical trial. Clinical Oral Implants Research, 2009. 20(12): p. 1386-1393. 25. Nannmark, U. and L. Sennerby, The Bone Tissue Responses to Prehydrated and Collagenated Cortico-Cancellous Porcine Bone Grafts: A Study in Rabbit Maxillary Defects. Clinical Implant Dentistry and Related Research, 2008. 10(4): p. 264-270. 26. Sheikh, Z., et al., Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res, 2017. 21: p. 9. 27. Wu, S.L., et al., Biomimetic porous scaffolds for bone tissue engineering. Materials Science Engineering R-Reports, 2014. 80: p. 1-36. 28. Mano, J.F., et al., Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface, 2007. 4(17): p. 999-1030. 29. Lee, S.H. and H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev, 2007. 59(4-5): p. 339-59. 30. Kandziora, F., et al., Bone morphogenetic protein-2 application by a poly(D,L-lactide)-coated interbody cage: in vivo results of a new carrier for growth factors. J Neurosurg, 2002. 97(1 Suppl): p. 40-8. 31. Kawaguchi, S., et al., Mechanical properties of artificial tracheas composed of a mesh cylinder and a spiral stent. Biomaterials, 2001. 22(23): p. 3085-90. 32. Ueda, H., et al., Repairing of rabbit skull defect by dehydrothermally crosslinked collagen sponges incorporating transforming growth factor beta1. J Control Release, 2003. 88(1): p. 55-64. 33. Balakrishnan, B. and A. Jayakrishnan, Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005. 26(18): p. 3941-3951. 34. Young, S., et al., Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release, 2005. 109(1-3): p. 256-274. 35. Hokugo, A., et al., Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng, 2005. 11(7-8): p. 1224-33. 36. Takahashi, Y., M. Yamamoto, and Y. Tabata, Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials, 2005. 26(23): p. 4856-65. 37. Carson, J.S. and M.P. Bostrom, Synthetic bone scaffolds and fracture repair. Injury, 2007. 38 Suppl 1: p. S33-7. 38. Niu, C.C., et al., A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine (Phila Pa 1976), 2009. 34(25): p. 2715-9. 39. Carson, J.S. and M.P.G. Bostrom, Synthetic bone scaffolds and fracture repair. Injury-International Journal of the Care of the Injured, 2007. 38: p. S33-S37. 40. Scheer, J.H. and L.E. Adolfsson, Tricalcium phosphate bone substitute in corrective osteotomy of the distal radius. Injury-International Journal of the Care of the Injured, 2009. 40(3): p. 262-267. 41. Wenisch, S., et al., In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A, 2003. 67(3): p. 713-8. 42. Tonino, A.J., et al., Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses. Clin Orthop Relat Res, 2009. 467(2): p. 478-84. 43. Ogose, A., et al., Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion (R)) in human bones. Biomaterials, 2006. 27(8): p. 1542-1549. 44. Bohner, M., Physical and chemical aspects of calcium phosphates used in spinal surgery. European Spine Journal, 2001. 10: p. S114-S121. 45. Malhotra, A. and P. Habibovic, Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends in Biotechnology, 2016. 34(12): p. 983-992. 46. Chen, Y., et al., Enhanced effect of beta-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: In vitro and in vivo evidence. Acta Biomaterialia, 2015. 11: p. 435-448. 47. Williams, D.F., There is no such thing as a biocompatible material. Biomaterials, 2014. 35(38): p. 10009-10014. 48. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics The bridge between basic science and clinical advancements in fracture healing. Organogenesis, 2012. 8(4): p. 114-124. 49. Laurencin, C., Y. Khan, and S.F. El-Amin, Bone graft substitutes. Expert Rev Med Devices, 2006. 3(1): p. 49-57. 50. Einhorn, T.A. and L.C. Gerstenfeld, Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology, 2015. 11(1): p. 45-54. 51. Govender, S., et al., Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures - A prospective, controlled, randomized study of four hundred and fifty patients. Journal of Bone and Joint Surgery-American Volume, 2002. 84a(12): p. 2123-2134. 52. Friedlaender, G.E., et al., Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions - A prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. Journal of Bone and Joint Surgery-American Volume, 2001. 83a: p. S151-S158. 53. Dimar, J.R., et al., Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine, 2006. 31(22): p. 2534-2539. 54. Kanakaris, N.K., et al., Application of BMP-7 to tibial non-unions: A 3-year multicenter experience. Injury-International Journal of the Care of the Injured, 2008. 39: p. S83-S90. 55. Kaito, T., Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. J Spine Surg, 2016. 2(4): p. 357-358. 56. Moghaddam, A., et al., Clinical application of BMP 7 in long bone non-unions. Arch Orthop Trauma Surg, 2010. 130(1): p. 71-6. 57. Ekrol, I., et al., A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury, 2008. 39 Suppl 2: p. S73-82. 58. Fourman, M.S., et al., Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin Orthop Relat Res, 2014. 472(2): p. 732-9. 59. Courvoisier, A., et al., Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? Int Orthop, 2014. 38(12): p. 2601-5. 60. Cowan, C.M., et al., MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng, 2007. 13(3): p. 501-12. 61. Boraiah, S., et al., Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res, 2009. 467(12): p. 3257-62. 62. Tannoury, C.A. and H.S. An, Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine Journal, 2014. 14(3): p. 552-559. 63. Varga, A.C. and J.L. Wrana, The disparate role of BMP in stem cell biology. Oncogene, 2005. 24(37): p. 5713-5721. 64. Luther, G., et al., BMP-9 Induced Osteogenic Differentiation of Mesenchymal Stem Cells: Molecular Mechanism and Therapeutic Potential. Current Gene Therapy, 2011. 11(3): p. 229-240. 65. Carragee, E.J., et al., Cancer Risk After Use of Recombinant Bone Morphogenetic Protein-2 for Spinal Arthrodesis. Journal of Bone and Joint Surgery-American Volume, 2013. 95a(17): p. 1537-1545. 66. Zhou, W., et al., Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem, 2017. 67. Liu, H., et al., CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells. Wound Repair Regen, 2017. 25(4): p. 652-664. 68. Tang, Q., et al., Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater, 2017. 61: p. 101-113. 69. Shafiq, M., D. Kong, and S.H. Kim, SDF-1alpha peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment. J Biomed Mater Res A, 2017. 105(10): p. 2670-2684. 70. Kortesidis, A., et al., Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 2005. 105(10): p. 3793-801. 71. Hosogane, N., et al., Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. Int J Biochem Cell Biol, 2010. 42(7): p. 1132-41. 72. Zhu, W., et al., Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem, 2011. 286(30): p. 26794-805. 73. Toupadakis, C.A., et al., Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res, 2012. 30(11): p. 1853-9. 74. Liu, C., et al., CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells. Int J Med Sci, 2013. 10(9): p. 1181-92. 75. Jones, G.N., et al., Upregulating CXCR4 in human fetal mesenchymal stem cells enhances engraftment and bone mechanics in a mouse model of osteogenesis imperfecta. Stem Cells Transl Med, 2012. 1(1): p. 70-8. 76. Walenkamp, A.M.E., et al., CXCR4 Ligands: The Next Big Hit? J Nucl Med, 2017. 58(Suppl 2): p. 77S-82S. 77. Wang, F., et al., Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1. Mar Drugs, 2017. 15(6). 78. Qin, G., et al., Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1alpha/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model. Mol Med Rep, 2016. 14(1): p. 57-68. 79. Perrucci, G.L., et al., Cyclophilin A modulates bone marrow-derived CD117(+) cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. Int J Cardiol, 2016. 212: p. 324-35. 80. Harousseau, J.L. and P. Moreau, Autologous hematopoietic stem-cell transplantation for multiple myeloma. N Engl J Med, 2009. 360(25): p. 2645-54. 81. Brundavanam, R.K., G.E.J. Poinern, and D. Fawcett, Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. American Journal of Materials Science, 2013. 3(4): p. 84-90. 82. Arsad, M.S., P.M. Lee, and L.K. Hung. Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles. in 2nd International Conference on Biotechnology and Food Science IPCBEE, IACSIT Press, Singapore. 2011. 83. Sang, L., et al., Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability. Journal of Materials Science: Materials in Medicine, 2010. 21(9): p. 2561-2568. 84. Feng, X., Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Curr Chem Biol, 2009. 3(2): p. 189-196. 85. Mazzone, N., et al., Preliminary Results of Bone Regeneration in Oromaxillomandibular Surgery Using Synthetic Granular Graft. Biomed Research International, 2018. 2018. 86. Muvaffak, A., I. Gurhan, and N. Hasirci, Prolonged cytotoxic effect of colchicine released from biodegradable microspheres. J Biomed Mater Res B Appl Biomater, 2004. 71(2): p. 295-304. 87. Saravanan, M., et al., Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration. J Drug Target, 2011. 19(2): p. 96-103. 88. Du, L.Q., P.S. Yang, and S.H. Ge, Stromal Cell-Derived Factor-1 Significantly Induces Proliferation, Migration, and Collagen Type I Expression in a Human Periodontal Ligament Stem Cell Subpopulation. Journal of Periodontology, 2012. 83(3): p. 379-388. 89. Liu, H.R., et al., Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model. Materials Science Engineering C-Materials for Biological Applications, 2015. 53: p. 83-94. 90. Huang, Z., et al., The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng, 2007. 13(9): p. 2311-20. 91. Aubin, J.E., Regulation of osteoblast formation and function. Rev Endocr Metab Disord, 2001. 2(1): p. 81-94. 92. Hoemann, C.D., H. El-Gabalawy, and M.D. McKee, In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol (Paris), 2009. 57(4): p. 318-23. 93. Zhang, G., et al., Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng, 2007. 13(8): p. 2063-71. 94. Hattori, K., et al., Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, 2001. 97(11): p. 3354-60. 95. Chen, F.M., et al., Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 2011. 32(12): p. 3189-209. 96. Thevenot, P.T., et al., The effect of incorporation of SDF-1 alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 2010. 31(14): p. 3997-4008. 97. Abbott, J.D., et al., Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004. 110(21): p. 3300-5. 98. Chen, F.M., et al., Surface-engineering of glycidyl methacrylated dextran/gelatin microcapsules with thermo-responsive poly(N-isopropylacrylamide) gates for controlled delivery of stromal cell-derived factor-1alpha. Biomaterials, 2013. 34(27): p. 6515-27. 99. Godot, V., et al., H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol, 2007. 120(4): p. 827-34. 100. Melief, S.M., et al., Adipose Tissue-Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity Than Their Bone Marrow-Derived Counterparts. Stem Cells Translational Medicine, 2013. 2(6): p. 455-463. 101. Kim, K.S., et al., Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer's disease model. Neurobiol Aging, 2013. 34(10): p. 2408-20. 102. Mavrogenis, A.F., et al., Biology of implant osseointegration. J Musculoskelet Neuronal Interact, 2009. 9(2): p. 61-71. 103. Liu, Y.S., et al., The effect of simvastatin on chemotactic capability of SDF-1 alpha and the promotion of bone regeneration. Biomaterials, 2014. 35(15): p. 4489-4498. 104. Carragee, E.J., E.L. Hurwitz, and B.K. Weiner, A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J, 2011. 11(6): p. 471-91. 105. Hustedt, J.W. and D.J. Blizzard, The controversy surrounding bone morphogenetic proteins in the spine: a review of current research. Yale J Biol Med, 2014. 87(4): p. 549-61. 106. Hankenson, K.D., et al., Angiogenesis in bone regeneration. Injury, 2011. 42(6): p. 556-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73683 | - |
dc.description.abstract | 牙周炎是在牙科常見的嚴重炎症,會逐漸損害軟組織並破壞支持牙齒的牙槽骨。由於牙齒的可修復性有限,這種類型的骨丟失自然是不可逆的,組織工程學的進步為牙科植入物或人工替代物提供有效再生齒槽骨缺損的策略,骨再生可以通過三種不同的機制完成:成骨,骨誘導和骨傳導,所有植入材料均發揮這三種作用機理中的一種或多種。在眾多的移植物方面,使用最為廣泛的移植物為同種異體移植物,然而,同種異體移植物通常僅具有骨傳導性,因此,開發具有骨誘導作用的新型同種異體移植物用於牙槽骨再生是必要的。在這項研究中,明膠/羥基磷灰石微球(GHM-S)用於嵌入基質細胞衍生的因子-1 (SDF-1),這是一種具有良好特徵的趨化因子,可用於吸引幹細胞,是促進齒槽骨再生的潛在候選者。本研究透過FTIR及XRD發現合成的羥磷灰石類似於天然骨組織的羥磷灰石,通過TGA分析測量了GHM-S微球的有機和無機成分,證實了GHM-S微球的組成與天然骨組織相似,SDF-1可以用控制釋放的方式從GHM-S微球中釋放,從而在培養環境中形成濃度梯度以吸引幹細胞遷移,在基因表達和蛋白質表達的結果也顯示幹細胞可以分化或發育為成骨細胞,最後,在具有牙槽骨缺損的大鼠模型中評估了體內的骨形成,並且根據電腦斷層影像和組織學檢查證實了GHM-S可促進齒槽骨的再生。我們的研究結果表明,GHM-S是一種可行且有效的齒槽骨填補材料。 | zh_TW |
dc.description.abstract | Periodontitis is a severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the teeth supporting. This type of bone loss is naturally irreversible due to the limited reparability of teeth. Advances in tissue engineering have provided the means for the effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. Bone regeneration can be accomplished through three different mechanisms: osteogenesis, osteoinduction, and osteoconduction. All grafting materials exert one or more of these three mechanisms of action. However, alloplastic grafts are typically only osteoconductive. Therefore, the development of a novel alloplastic graft with osteoinduction for alveolar bone regeneration is necessary. In this study, gelatin/hydroxyapatite microsphere (GHM-S) was used to embed stromal cell-derived factor-1 (SDF-1), a well-characterized chemokine for attracting stem cells and thus a strong candidate for promoting regeneration. Our finding showed that synthesized hydroxyapatite was similar to the natural bone tissue. The organic and inorganic components of the GHM-S was measured by TGA analysis, which confirmed that part of the GHM-S was similar to the natural bone tissue. SDF-1 could be released in a controlled manner from the GHM-S to form a concentration gradient in a culture environment to attract the stem cell migration. Gene expression and protein level indicated that stem cells is able to differentiate or develop into preosteoblasts. The in vivo bone formation was assessed in rats with alveolar bone defects and significant augmentation of bone by GHM-S was by micro-CT imaging and histological examination. The findings in this study demonstrated that the GHM-S is a feasible approach for alveolar bone regeneration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:00Z (GMT). No. of bitstreams: 1 U0001-2901202119054100.pdf: 3922484 bytes, checksum: 5c8dbe51fc23716969e45977ba7ea250 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xv LIST OF ABBREVIATION xvi Chapter 1. INTRODUCTION 1 1.1 Periodontium tissue 1 1.1.1 Gingiva 2 1.1.2 Periodontal ligament 3 1.1.3 Cementum 3 1.1.4 Alveolar bone 4 1.2 Clinical disease and treatment 4 1.2.1 Guide bone regeneration (GBR) and guide tissue regeneration (GTR) 6 1.2.2 Types of barrier membranes 8 1.2.3 Grafting materials 11 1.3 Purpose of the study 23 Chapter 2. THEORETICAL BASIS 25 2.1 Natural polymers for alveolar bone regeneration 25 2.1.1 Collagen 25 2.1.2 Gelatin 26 2.1 Different types of alloplastic grafts 27 2.2.1 Calcium sulfate 27 2.2.2 Calcium phosphate ceramics (Ca/ P ceramics) 28 2.2.3 Hydroxyapatites 29 2.2.4 Tricalcium phosphate 30 2.2.5 Biphasic calcium phosphate 31 2.3 Osteoinductive factor 31 2.4 Bone morphogenetic proteins 32 2.5 Cancer formation of bone morphogenetic proteins 35 2.6 Stromal cell derived factor -1 37 Chapter 3. MATERIALS AND METHODS 40 3.1 Experimental Instrument 40 3.2 Materials 41 3.3 Preparation of gelatin/ hydroxyapatite/ SDF-1 (GHM-S) microspheres 42 3.4 Characterization of GHM-S microsphere 43 3.4.1 Morphology of GHM-S microspheres 43 3.4.2 Crystal structure identification of GHM-S microspheres 43 3.4.3 Functional group identification of GHM-S microspheres 43 3.4.4 Thermogravimetric analysis of GHM-S microspheres 44 3.4.5 SDF-1 release profile and gradient 44 3.5 In-vitro study 45 3.5.1 Isolation and expansion of hMSCs 45 3.5.2 Cell viability assay 46 3.5.3 Chemotaxis and cell migration assays 46 3.5.4 Gene expression 47 3.5.5 Protein expression 49 3.6 In-vivo study 50 3.6.1 Animal 50 3.6.2 Experimental periodontal defect in the rat 50 3.6.3 Micro-computed tomography (micro-CT) analysis 52 3.6.4 Histological analysis 53 3.7 Statistical analysis 54 Chapter 4. RESULTS 55 4.1 Morphology of GHM-S microsphere 55 4.2 Crystal phase identification 56 4.3 Function group identification 57 4.5 Biocompatibility of GHM-S microsphere 59 4.6 SDF-1 releasing profile 60 4.7 Chemotaxis and cell migration assays 62 4.8 mRNA of osteoblast specific genes 64 4.9 Determination of osteogenic protein level 66 4.10 Quantification of osteogenic protein 68 4.11 Micro-computed tomography (μ-CT) analysis 69 4.12 Histological analysis 71 Chapter 5. DISCUSSION 75 Chapter 6. CONCLUSION 81 REFERENCE 82 PUBLICATION LIST 99 | |
dc.language.iso | en | |
dc.title | 明膠/氫氧基磷灰石微粒搭載基質細胞衍生因子於齒槽骨再生之研究 | zh_TW |
dc.title | Gelatin/ Hydroxyapatite Microsphere Loaded with Stromal Cell-derived Factor-1 for Alveolar Bone Regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉華昌(Hua-Chang Liu),黃義侑(Yi-You Huang),郭士民(Shyh-Ming Kuo),陳博洲(Po-Chou Chen),黃漢翔(Han-Hsiang Huang) | |
dc.subject.keyword | 基質細胞衍生因子,骨填補材料,氫氧基磷灰石,明膠,骨再生, | zh_TW |
dc.subject.keyword | stromal cell-derived factor-1,bone grafts,hydroxyapatite,gelatin,bone regeneration, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU202100263 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2901202119054100.pdf 目前未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。