請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7362完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
| dc.contributor.author | Chun-Cheng Lai | en |
| dc.contributor.author | 賴俊成 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:42:07Z | - |
| dc.date.available | 2025-06-29 | |
| dc.date.available | 2021-05-19T17:42:07Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-06-09 | |
| dc.identifier.citation | 1. Ganesh, M. and T. Shobha, Comparative evaluation of the marginal sealing ability of Fuji VII and Concise as pit and fissure sealants. J Contemp Dent Pract, 2007. 8(4): p. 10-8. 2. Simonsen, R.J., Retention and effectiveness of dental sealant after 15 years. J Am Dent Assoc, 1991. 122(10): p. 34-42. 3. Koyuturk, A.E., et al., Effect of thermal cycling on microleakage of a fissure sealant polymerized with different light sources. Dent Mater J, 2006. 25(4): p. 713-8. 4. Lin, N.J., et al., Effect of dental monomers and initiators on Streptococcus mutans oral biofilms. Dent Mater, 2018. 34(5): p. 776-785. 5. Lussi, A., E. Hellwig, and J. Klimek, Fluorides - mode of action and recommendations for use. Schweiz Monatsschr Zahnmed, 2012. 122(11): p. 1030-42. 6. Li, Y.H. and G.H. Bowden, The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res, 1994. 73(10): p. 1615-26. 7. Hamilton, I.R., Biochemical effects of fluoride on oral bacteria. J Dent Res, 1990. 69 Spec No: p. 660-7; discussion 682-3. 8. Rathke, A., et al., Antibacterial activity of a triclosan-containing resin composite matrix against three common oral bacteria. J Mater Sci Mater Med, 2010. 21(11): p. 2971-7. 9. Wicht, M.J., et al., Treatment of root caries lesions with chlorhexidine-containing varnishes and dentin sealants. Am J Dent, 2003. 16 Spec No: p. 25a-30a. 10. Mahapoka, E., et al., Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dent Mater J, 2012. 31(2): p. 273-9. 11. Rajabnia, R., et al., Anti-Streptococcus mutans property of a chitosan: Containing resin sealant. J Int Soc Prev Community Dent, 2016. 6(1): p. 49-53. 12. Niousha, E., et al., Chitosan/fluoride Nanoparticles for Preventing Dental Caries. Current Dentistry, 2019. 1(1): p. 61-67. 13. Kaste, L.M., et al., Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988-1991. J Dent Res, 1996. 75 Spec No: p. 631-41. 14. Demirci, M., S. Tuncer, and A.A. Yuceokur, Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur J Dent, 2010. 4(3): p. 270-9. 15. Nagano, T., Relation between the form of pit and fissure and the primary lesion of caries. Shika gakuho, 1960. 60: p. 80-90. 16. Hyatt, T.P., Prophylactic odontomy, the cutting into the teeth for the prevention of disease. Dent. Cos., 1923. 65: p. 234-241. 17. Klein, H. and J.W. Knutson, XIII. Effect of Ammoniacal Silver Nitrate on Caries in the First Permanent Molar. The Journal of the American Dental Association, 1942. 29(11): p. 1420-1426. 18. Ast, D.B., A. Bushel, and H.C. Chase, A Clinical Study of Caries Prophylaxis with Zinc Chloride and Potassium Ferrocyanide. The Journal of the American Dental Association, 1950. 41(4): p. 437-442. 19. Symons, A.L., C.Y. Chu, and I.A. Meyers, The effect of fissure morphology and pretreatment of the enamel surface on penetration and adhesion of fissure sealants. J Oral Rehabil, 1996. 23(12): p. 791-8. 20. Garg, N., et al., Comparative Evaluation of Penetration Ability of Three Pit and Fissure Sealants and Their Relationship with Fissure Patterns. Journal of dentistry (Shiraz, Iran), 2018. 19(2): p. 92-99. 21. Innes, N.P., D.J.P. Evans, and D.R. Stirrups, The Hall Technique; a randomized controlled clinical trial of a novel method of managing carious primary molars in general dental practice: acceptability of the technique and outcomes at 23 months. BMC Oral Health, 2007. 7(1): p. 18. 22. Selecman, J.B., B.M. Owens, and W.W. Johnson, Effect of preparation technique, fissure morphology, and material characteristics on the in vitro margin permeability and penetrability of pit and fissure sealants. Pediatr Dent, 2007. 29(4): p. 308-14. 23. Gooch, J., H. Dong, and F. Schork, Waterborne oil‐modified polyurethane coatings via hybrid miniemulsion polymerization. Journal of Applied Polymer Science, 2000. 76: p. 105-114. 24. Kim, B.K. and J.C. Lee, Waterborne polyurethanes and their properties. Journal of Polymer Science Part A: Polymer Chemistry, 1996. 34(6): p. 1095-1104. 25. Madbouly, S.A., et al., Rheological Behavior of Aqueous Polyurethane Dispersions: Effects of Solid Content, Degree of Neutralization, Chain Extension, and Temperature. Macromolecules, 2005. 38(9): p. 4014-4023. 26. Shin, E.J. and S.M. Choi, Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications. Adv Exp Med Biol, 2018. 1077: p. 251-283. 27. Dawes, C., What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc, 2003. 69(11): p. 722-4. 28. Arends, J. and J. Christoffersen, The nature of early caries lesions in enamel. J Dent Res, 1986. 65(1): p. 2-11. 29. ten Cate, J.M. and P.P. Duijsters, Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Res, 1983. 17(3): p. 193-9. 30. Ogaard, B., et al., Microradiographic study of demineralization of shark enamel in a human caries model. Scand J Dent Res, 1988. 96(3): p. 209-11. 31. Caslavska, V., E.C. Moreno, and F. Brudevold, Determination of the calcium fluoride formed from in vitro exposure of human enamel to fluoride solutions. Arch Oral Biol, 1975. 20(5-6): p. 333-9. 32. Saxegaard, E. and G. Rolla, Fluoride acquisition on and in human enamel during topical application in vitro. Scand J Dent Res, 1988. 96(6): p. 523-35. 33. Klimek, J., et al., Fluoridaufnahme im Zahnschmelz nach Anwendung von NaF-und AmF-Zahnpasten. Oralprophylaxe, 1998. 20: p. 192-196. 34. Weatherell, J.A., et al., Assimilation of fluoride by enamel throughout the life of the tooth. Caries Res, 1977. 11 Suppl 1: p. 85-115. 35. van der Mei, H.C., et al., Effects of amine fluoride on biofilm growth and salivary pellicles. Caries Res, 2008. 42(1): p. 19-27. 36. ten Cate, J.M. and C. van Loveren, Fluoride mechanisms. Dent Clin North Am, 1999. 43(4): p. 713-42, vii. 37. Hosseinnejad, M. and S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 2016. 85: p. 467-475. 38. Severino, R., et al., Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food control, 2015. 50: p. 215-222. 39. Zhihan, L. and R. Yang, Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. International journal of biological macromolecules, 2015. 75. 40. Yuan, G., et al., Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Control, 2016. 59: p. 818-823. 41. Chien, R.-C., M.-T. Yen, and J.-L. Mau, Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydrate polymers, 2016. 138: p. 259-264. 42. Fernandez-Saiz, P., J.M. Lagaron, and M. Ocio, Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, 2009. 23: p. 913-921. 43. Alburquenque, C., et al., Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol, 2010. 48(8): p. 1018-23. 44. Devlieghere, F., A. Vermeulen, and J. Debevere, Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food microbiology, 2004. 21(6): p. 703-714. 45. Kulikov, S.N., et al., Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship. Eur J Med Chem, 2014. 74: p. 169-78. 46. Ye, M., H. Neetoo, and H. Chen, Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol, 2008. 25(2): p. 260-8. 47. Li, X.-f., et al., Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydrate Polymers, 2010. 79(3): p. 493-499. 48. Reesha, K.V., et al., Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int J Biol Macromol, 2015. 79: p. 934-42. 49. Xiaorong, f., et al., Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydrate Polymers - CARBOHYD POLYM, 2011. 85: p. 221-227. 50. Liu, N., et al., Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate polymers, 2006. 64(1): p. 60-65. 51. Chung, Y.C., et al., Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin, 2004. 25(7): p. 932-6. 52. Byun, S.M., et al., Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells. International Journal of Food Science Technology, 2013. 48(1): p. 136-142. 53. Jeihanipour, A., K. Karimi, and M. Taherzadeh, Antimicrobial properties of fungal chitosan. Research journal of biological sciences, 2007. 2(3): p. 239. 54. Chien, R.C., M.T. Yen, and J.L. Mau, Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym, 2016. 138: p. 259-64. 55. Husain, S., et al., Chitosan Biomaterials for Current and Potential Dental Applications. Materials (Basel, Switzerland), 2017. 10(6): p. 602. 56. Kim, J.-S. and D.-H. Shin, Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restorative dentistry endodontics, 2013. 38(1): p. 36-42. 57. Gomez-Estaca, J., et al., Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol, 2010. 27(7): p. 889-96. 58. Sanpui, P., et al., The antibacterial properties of a novel chitosan-Ag-nanoparticles composite. Int J Food Microbiol, 2008. 124(2): p. 142-6. 59. Yang, H., et al., Effects of combined aqueous chlorine dioxide and chitosan coatings on microbial growth and quality maintenance of fresh-cut bamboo shoots (Phyllostachys praecox f. prevernalis.) during storage. Food and Bioprocess Technology, 2015. 8(5): p. 1011-1019. 60. Massouda, D.F., et al., Extruded Blends of Chitosan and Ethylene Copolymers for Antimicrobial Packaging. Packaging Technology and Science, 2012. 25(6): p. 321-327. 61. Hussain, M.R., M. Iman, and T.K. Maji, Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. International Journal of Advanced Engineering Applications, 2013. 6(4): p. 4-12. 62. Lin, N.J., et al., Effect of dental monomers and initiators on Streptococcus mutans oral biofilms. Dental Materials, 2018. 34(5): p. 776-785. 63. Koulaouzidou, E.A., et al., Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol, 2018. 120: p. 536-543. 64. Berry, R.J. and W. Trillwood, Sodium fluoride and cell growth. British medical journal, 1963. 2(5364): p. 1064. 65. OGURO, A., N. KOIZUMI, and K.-i. HORII, EFFECT OF FLUORIDE ION ON PROLIFERATION OF VERO CELL LINE CELLS. JOURNAL OF DENTAL HEALTH, 1982. 31(5): p. 453-460. 66. Li, K.-Y., et al., Fluorinated Montmorillonite Composite Resin as a Dental Pit and Fissure Sealant. Polymers, 2019. 11(10): p. 1535. 67. Hsu, H.M., et al., A continuous flow system for assessing fluoride release/uptake of fluoride-containing restorative materials. Dent Mater, 2004. 20(8): p. 740-9. 68. Carey, C.M., et al., Fluoride release from a resin-modified glass-ionomer cement in a continuous-flow system. Effect of pH. J Dent Res, 2003. 82(10): p. 829-32. 69. Ei, T.Z., et al., Comparison of resin-based and glass ionomer sealants with regard to fluoride-release and anti-demineralization efficacy on adjacent unsealed enamel. Dent Mater J, 2018. 37(1): p. 104-112. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7362 | - |
| dc.description.abstract | 此研究乃利用 離子凝膠法結合氟化鈉與幾丁聚醣以合成 奈米氟幾丁聚醣 ,並加入樹脂基質中,形成 一種既能抗菌又能釋放氟離子的溝隙封填劑。 本研究包括六個部分,第一個部分製備出 奈米氟幾丁聚醣 和奈米級矽烷化二氧化矽的樣品,與雙酚 A 甲基丙烯酸縮水甘油酯 、 三乙二醇二甲基丙烯酸酯 、樟腦醌 、 對二甲胺基苯甲酸乙酯完成混合,製成 奈米氟幾丁聚醣 樹脂。第二個部分是以傅立葉紅外線光譜儀偵測加氟前後幾丁聚醣的結構變化和粒徑大小,發現奈米氟幾丁聚醣 的結構中除了有 1567 cm-1 和 1417 cm-1 的特徵鋒,還多了 738 cm-1顯示三氟甲基形成的可能性,且其粒徑大小為 629 ± 55 nm 。第三部分為利用吸光值和菌落形成單位比較 0% 、 2% 、 4% 的 奈米氟幾丁聚醣樹脂與 Clinpro TM 溝隙封填劑的抗菌能力,結果 2% 奈米氟幾丁聚醣 樹脂的菌落形成單位為控制組的10%, 4%奈米氟幾丁聚醣樹脂的菌落形成單位為控制組的25%,兩者的抗菌效果無顯著差異,但相較於 Clinpro TM 溝隙封填劑有更明顯的抗菌效果。第四部份為觀察不同含量的奈米氟幾丁聚醣萃取液的細胞存活率 、 細胞毒性的高低,發現4% 奈米氟幾丁聚醣 樹脂萃取液有影響細胞複製的能力,故最後選擇 2% 奈米氟幾丁聚醣樹脂 與 Clinpro TM 溝隙封填劑比較機械性質。第五個部分是比較奈米氟幾 丁聚醣 樹脂與市售產品之間的機械性質, 2% 奈米氟幾丁聚醣樹脂的聚合深度 、表面抗壓強度 、 徑向抗拉/壓強度皆高於 Clinpro TM 溝隙封填劑。抗彎強度方面沒有差異性,流動性方面 較差。最後是進行氟離子釋放與再吸收的實驗,發現 2%奈米氟幾丁聚醣樹脂有與市售產品同樣優良的氟離子釋放與再吸收能力。藉由以上的研究結果發現, 2% 奈米氟幾丁聚醣樹脂具有抗菌能力 、 生物相容性 、 良好的機械性質,能釋放與再吸收氟離子, 具有成為溝隙封填劑的潛力。 | zh_TW |
| dc.description.abstract | The purpose of this study was to develop composite resin containing chitosan fluoride nanoparticle (CF) as pit and fissure sealant . It had the antibacterial characteristics and the ability of fluoride release and recharge. There are six parts in this study. First, to prepare composite resin containing CF and silanized silica nanoparticle , bisphenol A glycerolate dimethacrylate , triethylene glycol dimethacrylate, camphorquinone and ethyl 4-dimethylaminobenzoate were mixed with the filler as pit and fissure sealant. Second, we used fourier transform infrared spectroscopy and particle size distribution analyzer to observe the structure and hydrodynamic radius of CF . We found that besides the characteristic peaks, 1567 cm-1 and 1417 cm-1 , there was an additional peak, 738 cm-1 suspected to be the CF3 group. And the hydrodynamic radius was 629 ± 55 nm. Third, the antibacterial activity of resin containing 0%, 2%, 4% CF were compared with Clinpro TM fissure sealant through the measurement of optical density and colony forming units (CFUs).The CFU ratio of composite resin containing 2% CF was 10% compared to the control group, and composite resin containing 4% CF was 25%, which had no significant difference. But both of them had obviously antibacterial activity compared to Clinpro TM fissure sealant. In the fourth part, we observed the cell viability and toxicity of Clinpro TM fissure sealant and resin containing different concentration of CF. We found that the extract of composite resin containing 4% CF could result in the reduction of cell proliferation. Therefore, we choose composite resin containing 2% CF to compare the mechanical properties with Clinpro TM fissure sealant. In the fifth part, we found the value of curing depth, surface hardness, and diametral tensile strength of composite resin containing 2% CF were higher than Clinpro TM fissure sealant, but there was no difference in the flexural strength and the flowability was comparatively lower. Last, the fluoride release and recharge of comparatively lower. Last, the fluoride release and recharge of composite resin containing 2% CF were higher than Clinpro TM fissure sealant, but there was no difference in the flexural strength and the flowability was comparatively lower. Last, the fluoride release and recharge of composite resin containing 2% CF and Clinpro TM fissure sealant were tested. And we found the ability of fluoride release and recharge of composite resin containing 2% CF was as good as Clinpro TM fissure sealant. From the results above, composite resin containing 2% CF could be a pit and fissure sealant, which had the antibacterial activity, biocompatibility, good mechanical strength, and the ability of fluoride release and recharge. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:42:07Z (GMT). No. of bitstreams: 1 ntu-109-R06422009-1.pdf: 3422925 bytes, checksum: c66e4ac235c0986548a56cdff22c2e9d (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目 次 VI 圖目錄 X 表目錄 XI 第一章 研究動機與重要性---1 第二章 文獻分析---3 2.1 咬合面齲齒與溝隙封填劑的使用---3 2.2氟化物的三大抗齲作用---7 2.3 幾丁聚醣的抗菌能力---10 第三章 具體目標---16 第四章 實驗材料與方法---17 4.1實驗架構---17 4.2 實驗材料與儀器---18 4.2.1 實驗材料---18 4.2.2 實驗儀器---20 4.3實驗方法---22 4.3.1 奈米氟幾丁聚醣、奈米級矽烷化二氧化矽及奈米氟幾丁聚醣樹脂的製備---22 4.3.2 奈米氟幾丁聚醣的結構與粒徑分析---23 4.3.3 奈米氟幾丁聚醣樹脂的抗菌特性---25 4.3.4 奈米氟幾丁聚醣樹脂的生物相容性---32 4.3.5 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑的機械性質分析 ---41 4.3.6 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑的氟釋放與再吸收分析---44 4.3.7 統計分析---47 第五章 結果分析---48 5.1 奈米氟幾丁聚醣的結構與粒徑---48 5.1.1 幾丁聚醣的傅立葉紅外線光譜轉化圖(圖1)---48 5.1.2 奈米氟幾丁聚醣的傅立葉紅外線光譜轉化圖(圖1)--- 48 5.1.3 奈米氟幾丁聚醣的流體動力學半徑(hydrodynamic radius) (圖2)---48 5.2 奈米氟幾丁聚醣樹脂的抗菌特性---49 5.2.1 轉醣鏈球菌的生長曲線-吸光值與菌液濃度的關係(表2)---49 5.2.2 轉醣鏈球菌的生長曲線-菌落形成單位與菌液濃度的關係(表3)---49 5.2.3 不同含量的奈米氟幾丁聚醣樹脂的抗菌效果與吸光值的關係(圖3表4)---50 5.2.4 不同含量的奈米氟幾丁聚醣樹脂的抗菌效果與菌落形成單位關係(表5)---51 5.2.5 不同含量奈米氟幾丁聚醣樹脂抗菌效果於掃瞄電子顯微鏡下呈現(圖4)---52 5.3 奈米氟幾丁聚醣樹脂的生物相容性---52 5.3.1 不同含量奈米氟幾丁聚醣樹脂萃取液對於纖維母細胞的細胞存活率(表6圖5圖6)---52 5.3.2 不同含量奈米氟幾丁聚醣樹脂萃取液對於纖維母細胞的細胞毒性(表7)---53 5.3.3 纖維母細胞於不同含量奈米氟幾丁聚醣樹脂萃取液稀釋10倍後培養下的型態(圖7)---53 5.4 奈米氟幾丁聚醣樹脂的機械性質---54 5.4.1 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑在聚合深度方面比較(表8)---54 5.4.2 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑在表面硬度方面的比較(表8)---55 5.4.3 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑在徑向抗張強度方面的比較(表8)---55 5.4.4 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑在抗彎強度方面比較(表8)---56 5.4.5 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑在流動性方面比較(表8)---57 5.5 奈米氟幾丁聚醣樹脂的氟釋放與再吸收---57 5.5.1 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑氟離子釋放方面的比較(圖8圖9)---57 5.5.2 2%奈米氟幾丁聚醣樹脂與ClinproTM溝隙封填劑氟離子再吸收方面的比較(表9)---58 第六章 討論---60 第七章 結論---68 第八章 檢討與未來研究方向---70 第九章 參考文獻---71 附錄-圖---77 附錄-表---86 | |
| dc.language.iso | zh-TW | |
| dc.title | 研發含奈米氟幾丁聚醣抗菌複合樹脂作為溝隙封填劑 | zh_TW |
| dc.title | Development of Antibacterial Composite Resin Containing Chitosan/Fluoride Nanoparticle as Pit and Fissure Sealant | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王姻麟(Yin-Lin Wang),章浩宏(Hao-Hong Chang),陳文斌(Wen-Pin Chen),謝明發(Ming-Fa Hsieh) | |
| dc.subject.keyword | 溝隙封填劑,奈米氟幾丁聚醣,抗菌特性,生物相容性,氟離子釋放,氟離子再吸收, | zh_TW |
| dc.subject.keyword | pit and fissure sealant,chitosan,fluoride nanoparticle,antibacterial activity,biocompatibility,fluoride release,fluoride recharge, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202000940 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-06-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-06-29 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf | 3.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
