Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴育英(Yu-Ying Lai)
dc.contributor.authorYi-Hsiang Huangen
dc.contributor.author黃郁翔zh_TW
dc.date.accessioned2021-05-19T17:42:06Z-
dc.date.available2024-03-19
dc.date.available2021-05-19T17:42:06Z-
dc.date.copyright2019-03-19
dc.date.issued2019
dc.date.submitted2019-03-07
dc.identifier.citation1. Lanyi, J. K., Bacteriorhodopsin. Annual Review of Physiology 2004, 66, 665-688.
2. 傅熙媛 in 國立臺灣大學 微生物與生化學研究所. 2008.
3. Spudich, J. L., The Multitalented Microbial Sensory Rhodopsins. Trends In Microbiology 2006, 14 (11), 480-487.
4. Baliga, N. S.; Bonneau, R.; Facciotti, M. T.; Pan, M.; Glusman, G.; Deutsch, E. W.; Shannon, P.; Chiu, Y. L.; Gan, R. R.; Hung, P. L.; Date, S. V.; Marcotte, E.; Hood, L.; Ng, W. V., Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Research 2004, 14 (11), 2221-2234.
5. Sharma, A. K.; Spudich, J. L.; Doolittle, W. F., Microbial Rhodopsins: Functional Versatility and Genetic Mobility. Trends in Microbiology 2006, 14 (11), 463-469.
6. 黃敬啟 in 國立臺灣大學 微生物與生化學研究所. 2009.
7. Oesterhelt, D.; Stoeckenius, W., Functions of a New Photoreceptor Membrane. Proceedings of the National Academy of Sciences of the United States of America 1973, 70 (10), 2853-2857.
8. Sudo, Y.; Spudich, J. L., Three Strategically Placed Hydrogen-Bonding Residues Convert a Proton Pump into a Sensory Receptor. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (44), 16129-16134.
9. Sasaki, J.; Brown, L. S.; Chon, Y. S.; Kandori, H.; Maeda, A.; Needleman, R.; Lanyi, J. K., Conversion of Bacteriorhodopsin into a Chloride-Ion Pump. Science 1995, 269 (5220), 73-75.
10. Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C.; Tanaka, R.; Arima, T.; Yamashita, A.; Kobayashi, J.; Hosaka, T.; Mizohata, E.; Nogly, P.; Sugahara, M.; Nam, D.; Nomura, T.; Shimamura, T.; Im, D.; Fujiwara, T.; Yamanaka, Y.; Jeon, B.; Nishizawa, T.; Oda, K.; Fukuda, M.; Andersson, R.; Båth, P.; Dods, R.; Davidsson, J.; Matsuoka, S.; Kawatake, S.; Murata, M.; Nureki, O.; Owada, S.; Kameshima, T.; Hatsui, T.; Joti, Y.; Schertler, G.; Yabashi, M.; Bondar, A.-N.; Standfuss, J.; Neutze, R.; Iwata, S., A Three-Dimensional Movie of Structural Changes in Bacteriorhodopsin. Science 2016, 354 (6319), 1552-1557.
11. Mathies, R. A.; Lin, S. W.; Ames, J. B.; Pollard, W. T., From Femtoseconds to Biology - Mechanism of Bacteriorhodopsins Light-Driven Proton Pump. Annual Review of Biophysics and Biophysical Chemistry 1991, 20, 491-518.
12. Jackson, M. B., Thermodynamics of Membrane Receptors and Channels. Taylor & Francis: 1992.
13. Lanyi, J. K.; Schobert, B., Mechanism of Proton Transport in Bacteriorhodopsin from Crystallographic Structures of the K, L, M1, M2, and M2' Intermediates of the Photocycle. Journal of Molecular Biology 2003, 328 (2), 439-450.
14. Rammelsberg, R.; Huhn, G.; Lubben, M.; Gerwert, K., Bacteriorhodopsin's Intramolecular Proton-Release Pathway Consists of a Hydrogen-Bonded Network. Biochemistry 1998, 37 (14), 5001-5009.
15. Spassov, V. Z.; Luecke, H.; Gerwert, K.; Bashford, D., pKa Calculations Suggest Storage of an Excess Proton in a Hydrogen-Bonded Water Network in Bacteriorhodopsin. Journal of Molecular Biology 2001, 312 (1), 203-219.
16. Varo, G.; Lanyi, J. K., Kinetic and Spectroscopic Evidence for an Irreversible Step Between Deprotonation And Reprotonation of the Schiff-Base in the Bacteriorhodopsin Photocycle. Biochemistry 1991, 30 (20), 5008-5015.
17. Zimányi, L.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K., The Two Consecutive M Substates in the Photocycle of Bacteriorhodopsin are Affected Specifically by the D85n And D96n Residue Replacements. Photochem Photobiol 1992, 56 (6), 1049-1055.
18. Cheng, P.-C., The Contrast Formation in Optical Microscopy. In Handbook Of Biological Confocal Microscopy, Pawley, J. B., Ed. Springer US: Boston, 2006; pp 162-206.
19. Lakowicz, J. R., Principles of fluorescence spectroscopy. 2nd edition.; New York, 1999.
20. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437 (1‐2), 55-75.
21. Ruedas-Rama, M.; Alvarez-Pez, J.; Orte, A., Solving Single Biomolecules by Advanced Fret-Based Single-Molecule Fluorescence Techniques. Biophysical Reviews and Letters 2014, 08 , 161-190.
22. Stryer, L., Fluorescence Energy Transfer as a Spectroscopic Ruler. Annual Review of Biochemistry 1978, 47 (1), 819-846.
23. Sapsford, K. E.; Berti, L.; Medintz, I. L., Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angewandte Chemie International Edition 2006, 45 (28), 4562-4589.
24. Li, S.; Jiang, X.-F.; Xu, Q.-H. J. S. C. C., Polyfluorene Based Conjugated Polymer Nanoparticles for Two-Photon Live Cell Imaging. Science China Chemistry 2018, 61 (1), 88-96.
25. Aparicio-Ixta, L.; Rodriguez, M.; Ramos-Ortiz, G., Organic Nanomaterials with Two-Photon Absorption Properties for Biomedical Applications. In Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, Shulika, O.; Sukhoivanov, I., Eds. Springer Netherlands: Dordrecht, 2016; pp 25-50.
26. He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Multiphoton Absorbing Materials:  Molecular Designs, Characterizations, and Applications. Chemical Reviews 2008, 108 (4), 1245-1330.
27. Denk, W.; Strickler, J. H.; Webb, W. W., Two-Photon Laser Scanning Fluorescence Microscopy. Science 1990, 248 (4951), 73-76.
28. Fang, H.-H.; Chen, Q.-D.; Yang, J.; Xia, H.; Ma, Y.-G.; Wang, H.-Y.; Sun, H.-B., Two-Photon Excited Highly Polarized and Directional Upconversion Emission from Slab Organic Crystals. Optics Letters 2010, 35 (3), 441-443.
29. Wei, P.; Tan, O. F.; Zhu, Y.; Duan, G. H., Axial Superresolution of Two-Photon Microfabrication. Applied Optics 2007, 46 (18), 3694-3699.
30. Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N., Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy. Journal of the American Chemical Society 2007, 129 (9), 2669-2675.
31. Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A., Bacteriorhodopsin-Based Photo-Electrochemical cell. Biosensors and Bioelectronics 2010, 26 (2), 620-626.
32. Tamogami, J.; Kikukawa, T.; Miyauchi, S.; Muneyuki, E.; Kamo, N., A Tin Oxide Transparent Electrode Provides the Means for Rapid Time-resolved pH Measurements: Application to Photoinduced Proton Transfer of Bacteriorhodopsin and Proteorhodopsin. Photochemistry and Photobiology 2009, 85 (2), 578-589.
33. 黃元祈 in 國立臺灣大學 微生物與生化學研究所. 2016.
34. Armstrong, N. R.; Veneman, P. A.; Ratcliff, E.; Placencia, D.; Brumbach, M., Oxide Contacts in Organic Photovoltaics: Characterization and Control of Near-Surface Composition in Indium−Tin Oxide (ITO) Electrodes. Accounts of Chemical Research 2009, 42 (11), 1748-1757.
35. Sterman, S.; Marsden, J. G., Silane Coupling Agents. Industrial & Engineering Chemistry 1966, 58 (3), 33-37.
36. Veinot, J. G. C.; Marks, T. J., Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers. Accounts of Chemical Research 2005, 38 (8), 632-643.
37. Carter, C.; Brumbach, M.; Donley, C.; Hreha, R. D.; Marder, S. R.; Domercq, B.; Yoo, S.; Kippelen, B.; Armstrong, N. R., Small Molecule Chemisorption on Indium−Tin Oxide Surfaces:  Enhancing Probe Molecule Electron-Transfer Rates and the Performance of Organic Light-Emitting Diodes. The Journal of Physical Chemistry B 2006, 110 (50), 25191-25202.
38. Paramonov, P. B.; Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Armstrong, N. R.; Marder, S. R.; Brédas, J.-L., Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers. Chemistry of Materials 2008, 20 (16), 5131-5133.
39. Rowinska-Zyrek, M.; Witkowska, D.; Potocki, S.; Remelli, M.; Kozlowski, H., His-rich sequences – is plagiarism from nature a good idea? New Journal of Chemistry 2013, 37 (1), 58-70.
40. Hochuli, E.; Bannwarth, W.; Döbeli, H.; Gentz, R.; Stüber, D., Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. Bio/Technology 1988, 6, 1321.
41. Hengen, P. N., Purification of His-Tag fusion proteins from Escherichia coli. Trends in Biochemical Sciences 1995, 20 (7), 285-286.
42. C Liu, Y.-C.; Rieben, N.; Iversen, L.; S Sørensen, B.; Park, J.; Nygård, J.; Martinez, K., Specific and Reversible Immobilization of Histidine-Tagged Proteins on Functionalized Silicon Nanowires. Nanotechnology 2010, 21, 245105-245111.
43. Grabarek, Z.; Gergely, J., Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry 1990, 185 (1), 131-135.
44. Bart, J.; Tiggelaar, R.; Yang, M.; Schlautmann, S.; Zuilhof, H.; Gardeniers, H., Room-Temperature Intermediate Layer Bonding for Microfluidic Devices. Lab on a Chip 2009, 9 (24), 3481-3488.
45. Parthasarathy, A.; Ahn, H.-Y.; Belfield, K. D.; Schanze, K. S., Two-Photon Excited Fluorescence of a Conjugated Polyelectrolyte and Its Application in Cell Imaging. ACS Applied Materials & Interfaces 2010, 2 (10), 2744-2748.
46. Geng, J.; Goh, C. C.; Tomczak, N.; Liu, J.; Liu, R.; Ma, L.; Ng, L. G.; Gurzadyan, G. G.; Liu, B., Micelle/Silica Co-protected Conjugated Polymer Nanoparticles for Two-Photon Excited Brain Vascular Imaging. Chemistry of Materials 2014, 26 (5), 1874-1880.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7361-
dc.description.abstract從嗜鹽古細菌的細胞膜上發現的細菌視紫紅質HmBRI之突變種HmBRI-D94N是一種由光驅動的氫離子幫浦。HmBRI-D94N內部的全反式retinal在吸收光能之後改變構形,進而使HmBRI-D94N依序放出和吸收一個氫離子。這個光敏感蛋白質可以在光照下瞬間酸化周遭環境,造成一個短時間的pH值變化。這在生醫領域裡可以做為感光裝置元件,藥物傳遞材料和偵測元件等應用。本實驗分成兩部分,第一部分為利用具有螢光性質的共軛高分子去改變HmBRI-D94N氫離子幫浦功能所需使用的驅動波長。HmBRI-D94N是吸收波長為550 nm附近的綠光而受驅動,結合會放出綠色螢光的共軛高分子,理論上可以在其他波長的光照下驅動HmBRI-D94N,延伸HmBRI-D94N的應用範圍。本實驗使用兩種高分子,poly(p-phenyleneethynylene)的離子性高分子PPESO3,以及poly[2,7-(9,9-dihexylfluorene)-alt-4,7-benzothiadiazole)] (PFBT)的奈米粒子。這兩種共軛高分子都具有藍光的吸收波段以及綠光的螢光波段,並且都有著吸收紅外光的雙光子吸收的性質。以高穿透跟低傷害的紅外光激發高分子,藉由螢光共振能量轉移(FRET)間接激發HmBRI-D94N為此實驗的目標。第二部分為氧化銦錫(ITO)導電玻璃的表面改質,目的是讓HmBR-D94N I能夠依附在導電玻璃之上。首先使用三乙酸基胺(NTA)跟鎳離子,跟HmBRI-D94N上的組氨酸標籤(histidine tag)形成錯合物。這方法雖然能成功固定HmBRI-D94N在ITO上,但不夠穩定,容易在水中解離。因此在形成錯合物之後,再用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺 (3-(ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine,簡稱EDC)跟N-羥基琥珀醯亞胺(N-Hydroxysuccinimide,簡稱NHS)使HmBRI-D94N跟NTA之間形成更穩定的醯胺鍵結。結合HmBRI-D94N的氫離子釋放能力跟ITO因為環境酸鹼值改變電動勢的性質,可以作成偵測蛋白質交互反應的元件。zh_TW
dc.description.abstractA new kind of bacteriorhodopsin HmBRI was found in Haloarcula marismortui. HmBRI-D94N is a light driven proton pump, which is functioned by a series of conformational changes of the retinal inside the protein in the presence of light illumination. It can pump out a proton and change the pH value of environment in a very short time. HmBRI-D94N can be engineered for application for biotechnology, including molecular memory devices, light-triggered drug delivery, and a protein sensor. The first part of this study focuses on changing the wavelength of stimulating light to drive HmBRI-D94N, by introducing water-soluble conjugated polymer. The proton-pump functionality of HmBRI-D94N is triggered by absorbing primarily green light. Theoretically speaking, a polymer which can convert other wavelengths into green fluorescence should be capable of activating HmBRI-D94N by Förster resonance energy transfer (FRET). PPESO3 (conjugated polyelectrolyte) and poly(fluorine-alt-benzothiadiazole) (PFBT, water-soluble nanoparticles) are examined for this purpose. The results indicate that the FRET can take place between PFBT and HmBRI-D94N. The second part is the surface modification of indium tin oxide (ITO) glass by HmBRI-D94N, aiming at stably fastening HmBRI-D94N onto the ITO glass. A combination of nitrilotriacetic acid and nickel ion was employed to absorb HmBRI-D94N by establishing the coordination between polyhistidine-tag of HmBRI-D94N and nickel. This modification can be achieved; however, the coordination is not stable enough. HmBRI-D94N can be easily removed from the ITO surface by water and in the presence of imidazole‎. (3-(Ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine (EDC) and N-hydroxysuccinimide (NHS) were then utilized to build covalent bond between HmBRI-D94N and NTA. The corresponding device performs good stability against water and even imidazole, validating that HmBRI-D94N can be stably fastened on the ITO glass by our approaches.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:42:06Z (GMT). No. of bitstreams: 1
ntu-108-R05549036-1.pdf: 3741416 bytes, checksum: c90b523a088258d2393817e29bad6e09 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 i
圖目錄 iii
表目錄 vi
中文摘要 vii
Abstract viii
第一章:緒論 1
第一節:細菌視紫紅質HmBRI 1
1.1:HmBRI的基本介紹 1
1.2:HmBRI的運輸機制 3
1.3:研究動機 5
第二節:螢光共振能量轉移(FRET) 6
2.1:FRET的原理及相關應用 6
2.2:雙光子激發螢光的應用 9
第三節:氧化銦錫(ITO)的表面修飾 12
3.1:ITO修飾的基本介紹 12
3.2:Histidine-Tag與Ni2+的非共價性鍵結 15
3.3:EDC/NHS的交叉鍊接 17
第二章:結果與討論-蛋白質的能量傳遞 19
第一節:高分子的合成與性質 19
1.1:PPESO3的吸收光譜與螢光光譜 19
1.2:PFBT的吸收光譜與螢光光譜 23
第二節:PPESO3與HmBRI-D94N的能量轉移實驗 27
第三節:PFBT dots與HmBRI-D94N的能量轉移實驗 32
第三章:結果與討論-蛋白質的固定修飾 36
第一節:ITO表面修飾的實驗概述 36
第二節:Histidine tag非共價鍵結的光電化學測試 38
第三節:EDC-NHS共價鍵結的光電化學測試 41
第四章:總結 44
第五章:實驗細節 46
第一節:試藥 46
第二節:實驗儀器 46
2.1:核磁共振光譜儀(Nuclear Magnetic Resonance,NMR) 46
2.2:凝膠滲透層析儀(Gel Permeation Chromatograph,GPC) 46
2.3:紫外線與可見光光譜儀(UV-Vis Spectrophotometer) 47
2.4:螢光光譜儀(Fluorescence Spectrophotometer) 47
2.5:粒徑/介面電位分析儀(Particle Sizing and Zeta Potential) 47
2.6:光電化學實驗裝置(Photocurrent Device) 48
2.7:X光電子能譜分析儀(X-ray Photoelectron Spectroscopy) 48
第三節:合成 48
第四節:ITO表面修飾 51
參考資料 54
附錄:NMR光譜 58
附錄:X電子能譜分析圖 66
dc.language.isozh-TW
dc.title視紫紅質用於ITO表面修飾及與共軛高分子間的能量轉移研究zh_TW
dc.titleUtilization of Rhodopsin in ITO Surface Modification and Study on the Energy Transfer between Rhodopsin and Conjugated Polymersen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊啟昇(Chii-Shen Yang),葉怡均(Yi-Chun Yeh),葉伊純(Yi-Cheun Yeh)
dc.subject.keyword高分子,螢光,螢光共振能量轉移,表面修飾,蛋白質,視紫質,zh_TW
dc.subject.keywordpolymer,fluorescence,FRET,surface modification,protein,rhodopsin,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201900290
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-03-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
dc.date.embargo-lift2024-03-19-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved