Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫在弘
dc.contributor.authorMeng-Ping Haungen
dc.contributor.author黃夢萍zh_TW
dc.date.accessioned2021-06-17T08:06:35Z-
dc.date.available2020-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citationBurgman, M. A., & Fox, J. C. (2003, February). Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. In Animal Conservation forum (Vol. 6, No. 1, pp. 19-28). Cambridge University Press.
Reilly WJ (1931) The law of retail gravitation. New York: Knickerbocker Press.
Huff, D. L. (1964). Defining and estimating a trading area. Journal of marketing, 28(3), 34-38..
Brunner, J. A., & Mason, J. L. (1968). The influence of driving time upon shopping center preference. Journal of Marketing, 32(2), 57-61.
Dramowicz, E. (2005). Retail trade area analysis using the Huff model. Directions Magazine, Jul, 2.
Baray, J., & Cliquet, G. (2007). Delineating store trade areas through morphological analysis. European Journal of Operational Research, 182(2), 886-898.
Gauri, D. K., Pauler, J. G., & Trivedi, M. (2009). Benchmarking performance in retail chains: an integrated approach. Marketing Science, 28(3), 502-515.
Cui, C., Wang, J., Pu, Y., Ma, J., & Chen, G. (2012). GIS-based method of delimitating trade area for retail chains. International Journal of Geographical Information Science, 26(10), 1863-1879.
Hanna, R., Kreindler, G., & Olken, B. A. (2017). Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in Jakarta. Science, 357(6346), 89-93.
Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home‐range studies. Ecology, 70(1), 164-168.
Getz, W. M., Fortmann-Roe, S., Cross, P. C., Lyons, A. J., Ryan, S. J., & Wilmers, C. C. (2007). LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PloS one, 2(2), e207.
Trevor, H., Robert, T., & JH, F. (2009). The elements of statistical learning: data mining, inference, and prediction.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
Fonti, V., & Belitser, E. (2017). Feature selection using lasso. VU Amsterdam Research Paper in Business Analytics.
CSIS - Center for Spatial Information Science, The University of Tokyo. About People Flow Data. Retrieved July 8, 2019, from https://pflow.csis.u-tokyo.ac.jp/data-service/pflow-data/
Mark Li., & Zhou Bailiang. (2016). Discover the action around you with the updated Google Maps. Retrieved July 8, 2019, from https://blog.google/products/maps/discover-action-around-you-with-updated/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73599-
dc.description.abstract本研究以東京都的商圈分析做為案例研究,提出一個使用人口移動資料在空間中劃分研究單位,並且標記單位特徵的過程。研究方法使用核密度估計(Kernel Density Estimation, KDE)以及階層式分群方法(Hierarchical Clustering)逐步劃分研究單位、伽瑪混合模型(Gamma Mixture Model) 標記單位特徵。此過程得到的結果,再利用邏輯斯迴歸模型(Logistic Regression Model)解釋影響單位特徵表現的重要變數。研究結果顯示在東京都的重要幹線包含:中央線快速(JC)、武藏野線(JM)以及京葉線(JE)附近被標記為非在地商圈。此類型商圈吸引較多四十歲以上的職業人口和女性,且除了步行以外,使用各項運輸工具的比例皆較高。本研究使用新提出的方法和移動資料劃分出的研究單位,避免了主觀決定單位尺度的方式。zh_TW
dc.description.abstractThe study takes a trading area analysis for Tokyo city as a case study to propose a process for the study area to group into each unit and then label the characteristics. We used Kernel Density Estimation (KDE) and Hierarchical Clustering for the grouping phase and Gamma Mixture Model for labeling. After the process, we built the Logistic Regression model to describe the difference between a local and non-local shopping region in Tokyo city. The results of the study show that the non-local shopping regions are surrounding by several railway lines include Chūō Rapid Line (JC), Musashino Line (JM), and Keiyo Line (JE). This type of shopping region attracts more employed people with age over 40 and women. In addition to walking, the proportion of other modes of transport used is higher than in the local shopping regions. This study proposed the new method for grouping the mobility patterns of customers to delineate the boundary of the shopping districts.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:35Z (GMT). No. of bitstreams: 1
ntu-108-R06h41009-1.pdf: 3551824 bytes, checksum: b32301ac8d1c53eeadb0b48c40f8d1a3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝 辭 i
摘 要 ii
Abstract iii
第一章 緒論 1
第二章 文獻回顧 2
第三章 模型 4
3.1 階層式分群方法(Hierarchical Clustering) 4
3.2 混合模型(Mixture Model) 6
3.3 邏輯斯迴歸(Logistic Regression) 7
第四章 研究方法 8
4.1 研究架構 8
4.2 研究流程 8
4.3 資料處理 10
4.4 建立商圈分析單位 11
4.5 Mixture models建構移動距離混合模型 15
4.6 Logistic Regression探討商圈在地與否的特徵差異 17
第五章 研究結果 19
5.1 商圈單位建立 19
5.2 在地商圈與非在地商圈 22
第六章 討論與結論 31
參考文獻 32
dc.language.isozh-TW
dc.subject核密度估計zh_TW
dc.subject商圈分析zh_TW
dc.subject伽瑪混合模型zh_TW
dc.subject階層式分群方法zh_TW
dc.subject邏輯斯迴歸模型zh_TW
dc.subjectTrading Area Analysisen
dc.subjectHierarchical Clusteringen
dc.subjectKernel Density Estimationen
dc.subjectGamma Mixture Modelen
dc.subjectLogistic Regression Modelen
dc.title考慮人口移動相似性的分群:以東京都的商圈分析為例zh_TW
dc.titleGrouping with the Similarity of Human Movements: A Case Study of Trading Area Analysis in Tokyo Cityen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee任立中,林楨家
dc.subject.keyword商圈分析,核密度估計,階層式分群方法,伽瑪混合模型,邏輯斯迴歸模型,zh_TW
dc.subject.keywordTrading Area Analysis,Kernel Density Estimation,Hierarchical Clustering,Gamma Mixture Model,Logistic Regression Model,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201904021
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved