Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee),吳文中(Wen-Jong Wu)
dc.contributor.authorHsin Leeen
dc.contributor.author李鑫zh_TW
dc.date.accessioned2021-06-17T08:06:33Z-
dc.date.available2021-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] C. R. Englert, J. T. Bays, K. D. Marr, C. M. Brown, A. C. Nicholas, and T. T. Finne, 'Optical orbital debris spotter,' (in English), Acta Astronautica, vol. 104, no. 1, pp. 99-105, Nov 2014.
[2] A. Sawant. (2018). Smart factory market analysis, growth, share, Industry trends, supply demand, forecast and sales to 2022. Available: https://www.reuters.com/brandfeatures/venture-capital/article?id=45396
[3] S. Shen, X. Jin, and C. Hao, 'Cleaning space debris with a space-based laser system,' Chinese Journal of Aeronautics, vol. 27, no. 4, pp. 805-811, 2014.
[4] J. M. Sanchez-Pena, C. Marcos, M. Y. Fernandez, and R. Zaera, 'Cost-effective optoelectronic system to measure the projectile velocity in high-velocity impact testing of aircraft and spacecraft structural elements,' (in English), Optical Engineering, vol. 46, no. 5, May 2007.
[5] Z. X. Jia, K. Gong, and Y. J. Huo, 'Optoelectronic system for high-speed flier velocity measurement based on laser scattering,' (in English), Optical Engineering, vol. 48, no. 4, Apr 2009.
[6] L. Hang, C. He, and B. Wu, 'Novel distributed optical fiber acoustic sensor array for leak detection,' Optical Engineering, vol. 47, no. 5, pp. 1-6, 6, 2008.
[7] M. M. Molenaar, D. J. Hill, P. Webster, E. Fidan, and B. Birch, 'First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,' (in English), Spe Drilling & Completion, vol. 27, no. 1, pp. 32-38, Mar 2012.
[8] A. Mateeva et al., 'Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling,' (in English), Geophysical Prospecting, vol. 62, no. 4, pp. 679-692, Jul 2014.
[9] J. C. Juarez, E. W. Maier, C. Kyoo Nam, and H. F. Taylor, 'Distributed fiber-optic intrusion sensor system,' Journal of Lightwave Technology, vol. 23, no. 6, pp. 2081-2087, 2005.
[10] D. H. Dolan, 'Foundations of VISAR analysis,'; Sandia National Laboratories2006, Available: https://www.osti.gov/servlets/purl/886901.
[11] D. R. Goosman, 'Formulas for Fabry-Perot velocimeter performance using both stripe and multifrequency techniques,' Appl Opt, vol. 30, no. 27, pp. 3907-23, Sep 20 1991.
[12] O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, 'Compact system for high-speed velocimetry using heterodyne techniques,' (in English), Review of Scientific Instruments, vol. 77, no. 8, p. 083108, Aug 2006.
[13] D. H. Dolan and S. C. Jones, 'Push-pull analysis of photonic Doppler velocimetry measurements,' Review of Scientific Instruments, vol. 78, no. 7, p. 076102, 2007/07/01 2007.
[14] B. Lu et al., 'High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse,' Opt Lett, vol. 42, no. 3, pp. 391-394, Feb 1 2017.
[15] Q. Liu, X. Fan, and Z. He, 'Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,' Opt Express, vol. 23, no. 20, pp. 25988-95, Oct 5 2015.
[16] J. Popp et al., 'Phase-sensitive OTDR system based on digital coherent detection,' vol. 8311, p. 83110S, 2011.
[17] M. A. Richards, Fundamentals of radar signal processing. New York City: McGraw-Hill, 2005.
[18] W. Zou, S. Yang, X. Long, and J. Chen, 'Optical pulse compression reflectometry: proposal and proof-of-concept experiment,' Optics Express, vol. 23, no. 1, pp. 512-522, 2015/01/12 2015.
[19] A. Graps, 'An introduction to wavelets,' IEEE Computational Science and Engineering, vol. 2, no. 2, pp. 50-61, 1995.
[20] A. Grossmann and J. Morlet, 'Decomposition of hardy functions into square integrable wavelets of constant shape,' SIAM Journal on Mathematical Analysis, vol. 15, no. 4, pp. 723-736, 1984.
[21] 吳文中, '高性能量測系統之高速訊號處理平台,' 碩士, 應用力學研究所, 國立台灣大學, 1998.
[22] C. K. Lee et al., 'A high performance Doppler interferometer for advanced optical storage systems,' (in English), Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, no. 3b, pp. 1730-1741, Mar 1999.
[23] 李浩祥, '非侵入式手腕脈搏光學檢測 - 雷射都卜勒干涉儀及布拉格光纖光柵感測器之應用,' 碩士, 工程科學及海洋工程學系, 國立台灣大學, 2017.
[24] M. Ren, 'Distributed optical fiber vibration sensor based on phase-sensitive optical time domain reflectometry,' MSc University of Ottawa, 2016.
[25] E. M. Carapezza, J. C. Juarez, and H. F. Taylor, 'Distributed fiber optic intrusion sensor system for monitoring long perimeters,' vol. 5778, p. 692, 2005.
[26] M. Nakazawa, 'Rayleigh backscattering theory for single-mode optical fibers,' Journal of the Optical Society of America, vol. 73, no. 9, pp. 1175-1180, 1983/09/01 1983.
[27] G. P. Agrawal, Nonlinear fiber optics. Pittsburgh City: Academic press, 2007.
[28] B. L. Danielson, 'Optical time-domain reflectometer specifications and performance testing,' Applied Optics, vol. 24, no. 15, pp. 2313-2322, 1985/08/01 1985.
[29] D. Chen, Q. Liu, X. Fan, and Z. He, 'Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,' Journal of Lightwave Technology, vol. 35, no. 10, pp. 2037-2043, 2017.
[30] A. Ghatak and K. Thyagarajan, Optical electronics. Cambridge, England: Cambridge University Press, 1991.
[31] A. Takagi, K. Jinguji, and M. Kawachi, 'Wavelength characteristics of (2 X-2) optical channel-type directional-couplers with symmetrical or nonsymmetric coupling structures,' (in English), Journal of Lightwave Technology, vol. 10, no. 6, pp. 735-746, Jun 1992.
[32] G. Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, 'Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,' IEEE Photonics Journal, vol. 8, no. 3, pp. 1-12, 2016.
[33] K. H. Nam and B. Y. Kim, 'Subharmonics and chaos generation in all-fiber phase modulator: experimental and theoretical analyses with simulation,' Applied Optics, vol. 52, no. 25, pp. 6153-6162, 2013/09/01 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73596-
dc.description.abstract光學檢測的發展,日新月異,各種特殊的量測應用也逐步地出現在各個應用領域。在多種光學量測系統中,經常運用干涉原理來進行系統架構,本論文的研究過程中,運用干涉原理開發出兩種應用領域有極大差異的高性能系統。第一種系統的開發乃是基於複合材料的應用範圍在今日航空器中日漸廣泛,所以一種可以量測超高速衝擊碎片的飛行路徑和速度的需求益發重要。第二種應用乃是基於今日隨著工業4.0的科技發展,智慧工廠逐漸成為各大科技的前進趨勢,不論是製程上的優化或是設備儀器的維修與照顧,工廠裡的監測系統也變得越來越重要。基於前述應用情境,因此本研究之目的乃著眼於開發碎片量測與智慧工廠監測等兩個光學系統。
本論文之碎片量測系統目標為量測碎片待測物之飛行過程,探討碎片待測物經過瞬間高電壓產生脈衝爆炸事件過程之影響,並模擬待測物結構在爆炸事件之訊號與驗證。結合光纖通訊技術與光子都卜勒干涉儀量測待測物反射回光與參考光在時序上之拍頻干涉訊號,其拍頻訊號經由連續小波轉換進行時頻分析事件在時序上所發生的頻率定位,接著以影像處理描繪出碎片待測物之速度歷程並加以積分繪製碎片飛行歷程。本實驗之系統可成功量測到1000 m/s以上之速度,並且可見量測碎片之最終速度與設置電壓呈現相對關係。
工廠監測系統以時域光學反射式相位量測儀(Phase Optical Time-Domain Reflectometer, φ-OTDR)作為實驗基礎架構,本實驗使用線性調頻(Linear Frequency Modulation, LFM)脈衝作為輸入光纖檢測區之訊號,搭配匹配濾波提升空間解析度、信號訊雜比,並且使用相位解調方法在實驗中取得相位,本系統所使用100 ns脈衝寬度,頻率掃描範圍為150 MHz,經由實驗量測出空間解析度為0.5967公尺,以100 z和2 Vpp電壓驅動圓柱體壓電致動器,成功量測最小到應變0.361 nm/m ,驗證驅動電壓與對應光纖軸向應變呈現正相關性,並且成功量測100 Hz和500 Hz頻率變化模擬儀器損壞造成自然頻率偏移。
zh_TW
dc.description.abstractThe development of optical inspection techniques is rapidly improving, and those specific measuring methods are gradually applying in various fields. In a variety of optical measuring systems, interferometry is often used to carry out the system architecture. In this thesis, two high-performance systems with extremely different application fields were developed by using interferometry as their fundamental principle. The first system is developed to handle the need associated with the wide spread utilization of composite materials in aircraft nowadays, the technique to measure the flight path/time of ultra-high speed fragment is urgent need. The second application is targeted towards the applications of Industry 4.0. Smart factories are gradually becoming the major technology trend. Whether it is process optimization or equipment maintenance, the monitoring system in the factory is becoming ever more important. Based on the aforementioned application scenarios, the purpose of this study is to develop two optical systems for ultra-high speed fragment measurement and smart factory monitoring.
The goal of the ultra-high speed fragment measurement system of this thesis is to measure the flying process of the fragment. I discussed the influence between the explosion triggered by transient high voltage and measured the signal, and simulated the relation between the structure of explode object and measured the signal to verify the system. This optical measurement method combines the fiber-optic communication technology with photonic Doppler velocimetry to measure the beat signals generated by the temporal interference of sample beam and reference beam. These beat signals were analyzed by continuous wavelet transform, one kind of time-frequency analysis, to locate the frequency occurring in time series. Then I used image processing technology to plot the velocity profile of the object, and integrated it to get flying position profile. The system can successfully measure speeds above 1,000 m/s, and it can be seen that the terminal velocity of the measured fragments is related to the setting voltage.
The factory monitoring system uses phase optical time-domain reflectometer (φ-OTDR) as the experimental infrastructure. In this experiment, linear frequency modulation (LFM) pulse was used as the signal input into fiber under test (FUT). With the match filter, spatial resolution and signal-to-noise ratio were enhanced. The phase demodulation method was used to obtain the phase information in the experiment. In this system, laser pulse width is 100 ns, frequency sweep range is 150 MHz, and spatial resolution is 0.5967 m. The measured cylinder piezoelectric actuator was driven at 100 Hz with various voltage, 2 Vpp, successfully measuring a minimum strain of 0.361 nm/m. The driving voltage was verified that positively correlated with the corresponding fiber axial strain, and the frequency shifts due to assumed instrument damage at 100 Hz and 500 Hz were successfully measured.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:33Z (GMT). No. of bitstreams: 1
ntu-108-R06525084-1.pdf: 6548576 bytes, checksum: 642d562419131ad0e08f8671d54d9a28 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIII
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.1.1 碎片量測與智慧工廠監測背景 3
1.1.2 量測方法比較 3
1.3 研究目標 5
1.4 論文架構 7
第2章 光子都卜勒速度干涉儀 8
2.1 光學系統 8
2.1.1 都卜勒效應 8
2.1.2 架構與原理 9
2.2 時頻分析 10
2.2.1 短時距傅立葉轉換演算法 11
2.2.2 連續小波轉換 12
2.3 光子都卜勒速度干涉儀模擬 13
2.4 光路校正 16
第3章 光子都卜勒速度干涉儀實驗結果分析 17
3.1 AVID量測位移與光子都卜勒速度干涉儀速度驗證 17
3.1.1 蜂鳴片實驗量測數據 18
3.1.2 倒車雷達驗證量測數據 21
3.2 碎片待測物與飛行歷程時頻成分分佈 22
3.2.1 碎片待測物 22
3.2.2 待測物夾具 24
3.2.3 飛行歷程時頻成分分佈 25
3.3 不同實驗架設比較 27
3.3.1 不同探頭量測比較 27
3.3.2 示波器不同電壓增益量測比較 29
3.3.3 有無光圈訊號比較 30
3.4 速度曲線追跡處理流程 31
3.5 系統量測 32
3.5.1 觸發器 33
3.5.2 實驗架設與結果 34
第4章 時域光學反射式相位量測儀(φ-OTDR) 39
4.1 光路架構與原理 39
4.1.1 光纖中的散射 39
4.1.2 傳統OTDR原理 41
4.1.3 φ-OTDR原理 45
4.1.4 平衡接收器 47
4.2 訊號處理 51
4.2.1 匹配濾波器 52
4.2.2 解調相位解法 57
4.3 光纖應變與相位之相關性 58
4.4 時域光學反射式相位量測儀模擬 59
4.4.1 脈衝參數與訊號模擬 59
4.4.2 振動位置與振幅模擬 61
4.4.3 監測工廠模擬 62
第5章 φ-OTDR實驗結果分析與討論 64
5.1 實驗架設 64
5.2 實驗結果與討論 66
5.2.1 驅動電壓與量測相位之關係 66
5.2.2 模擬儀器故障自然頻率偏移 69
第6章 結論與未來展望 70
6.1 結論 70
6.2 未來展望 71
參考文獻 72
dc.language.isozh-TW
dc.subject分佈式振動感測zh_TW
dc.subject光學感測器zh_TW
dc.subject光子都卜勒干涉儀zh_TW
dc.subject高速衝擊檢測zh_TW
dc.subject時域光學反射式相位量測儀zh_TW
dc.subject智慧工廠監測zh_TW
dc.subjectDistributed vibration sensingen
dc.subjectSmart factory monitoringen
dc.subjectHigh-speed impact testingen
dc.subjectPDVen
dc.subjectOptical sensoren
dc.title光子都卜勒干涉儀與時域光學反射式相位量測儀
之高速碎片量測與智慧工廠監測
zh_TW
dc.titleOptical Fiber Interferometer and Phase Optical Time-Domain Reflectometer for Ultra-high Speed Fragment Detection & Smart Factory Monitoringen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李書昇(Shu-sheng Lee),黃君偉(Jun-Wei Huang),林鼎晸(Ding-Zheng Lin)
dc.subject.keyword光學感測器,光子都卜勒干涉儀,高速衝擊檢測,時域光學反射式相位量測儀,智慧工廠監測,分佈式振動感測,zh_TW
dc.subject.keywordOptical sensor,PDV,High-speed impact testing,Smart factory monitoring,Distributed vibration sensing,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201903981
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved