Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73595
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor段維新
dc.contributor.authorChih-Chi Hsuen
dc.contributor.author許智齊zh_TW
dc.date.accessioned2021-06-17T08:06:32Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] Woolf, A. D. The bone and joint decade 2000–2010. Annals of the rheumatic diseases, 2000, 59(2) 81-82.
[2] Baroli, B., From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. Journal of pharmaceutical sciences, 2009, 98(4): 1317-1375.
[3] Laurencin, C., Khan, Y. Bone graft substitutes. Expert review of medical devices, 2006, 3(1) 49-57.
[4] Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. Bone regeneration: current concepts and future directions. BMC medicine, 2011, 9(1), 66.
[5] Lerner, H. Bone Grafts For Implant Dentistry: The Basics. Oral health , 2015. [6] Summers, B. N., & Eisenstein, S. M. Donor site pain from the ilium. A complication of lumbar spine fusion. The Journal of bone and joint surgery. British volume, 1989, 71(4), 677-680.
[7] Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., Logroscino, G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 2014 ,25 (10), 2445-2461.
[8] Berthiaume, F., Maguire, T. J., & Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annual review of chemical and biomolecular engineering, 2011, (2) 403-430..
[9] Burg, K. J., Porter, S., & Kellam, J. F. Biomaterial developments for bone tissue engineering. Biomaterials, 2000, 21(23), 2347-2359.
[10] Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., & Turng, L. S. Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering, 2018, 13(1) 107-119.
[11] O'brien, F. J. Biomaterials & scaffolds for tissue engineering. Materials today, 2011, 14(3), 88-95.
[12] Athanasiou, K. A., Agrawal, C. M., Barber, F. A., & Burkhart, S. S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1998, 14(7): 726-737.
[13] Middleton, J. C., Tiptom, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000, 21(23) 2335-2346.
[14] Uhthoff, H. K.; Finnegan, M. The effects of metal plates on post-traumatic remodelling and bone mass. The Journal of bone and joint surgery. British volume, 1983, 65(1) 66-71.
[15] El-Amin, S. F., Lu, H. H., Khan, Y., Burems, J., Mitchell, J., Tuan, R. S., & Laurencin, C. T. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003, 24(7) 1213-1221.
[16] Razak, S. I. A., Sharif, N., & Rahman, W. A. W. A. Biodegradable polymers and their bone applications: a review. Int. J. Basic Appl. Sci, 2012, 12(1) 31-49.
[17] Athanasiou, K. A., Agrawal, C. M., Barber, F. A., & Burkhart, S. S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1998, 14(7) 726-737.
[18] Carter, D. R., & Hayes, W. C. Bone compressive strength: the influence of density and strain rate. Science, 1976, 194(4270) 1174-1176.
103
[19] Murphy, C. M., Haugh, M. G., & O'brien, F. J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010, 31(3) 461-466.
[20] Murphy, C. M.; O’brien, F. J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell adhesion & migration, 2010, 4(3) 377-381.
[21] O’brien, F J., Harley, B. A., Yannas, I. V., & Gibson, L. J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26(4) 433-441.
[22] Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M., & Murphy, G. F. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sciences, 1989, 86(3) 933-937.
[23] Kasten, P., Vogel, J., Beyen, I., Weiss, S., Niemeyer, P., Leo, A., & Lüginbuhl, R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. Journal of biomaterials applications, 2008, 23(2) 169-188.
[24] Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., & Yan, 3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 2017, 15 93-101.
[25] Egan, P., Wang, X., Greutert, H., Shea, K., Wuertz-Kozak, K., & Ferguson, Mechanical and Biological Characterization of 3D Printed Lattices. 3D Printing and Additive Manufacturing, 2019, 6(2) 73-81.
[26] Gómez, S., Vlad, M. D., López, J., & Fernández, E. Design and properties of 3D scaffolds for bone tissue engineering. Acta biomaterialia, 2016, 42: 341-350.
[27] Greenwood, C., Clement, J. G., Dicken, A. J., Evans, J. P. O., Lyburn, I. D., Martin, R. M. & Zioupos, P. The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue. Bone reports, 2015, 3: 67-75.
[28] Phelps, E. A., Garcia, A. J. Update on therapeutic vascularization strategies. 2009. [29] Shastri, P. V.; Martin, I. Tissue engineering by cell transplantation. In: Stem Cell Transplantation and Tissue Engineering. Springer, Berlin, Heidelberg, 2002. 29- 45.
[30] Hutmacher, D. W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 2001, 12(1) 107-124.
[31] Sachlos, E., Czernuszka, J. T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003, 5(29) 39-40.
[32] Hutmacher, D. W., Sittinger, M., Risbud, M.d V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. TRENDS in Biotechnology, 2004, 22(7) 354-362.
[33] Subia, B., Kundu, J., Kundu, S. C. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue engineering, 2010, 141.
[34] Diment, L. E., Thompson, M. S.; BergmannE, J. H. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ open, 2017, 7(12) e016891.
[35] Sachs, E., Cima, M., Williams, P., Brancazio, D., & Cornie, J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. Journal of engineering for industry, 1992, 114(4), 481-488.
[36] Fry, R. R., Gargya, I., Goyal, S., Pal, J., Chawla, S., Pandher, P. K., ... & Singh, P. Additive Manufacturing-An Enigma: the Future of Oral & Maxillofacial Surgery. IOSR Journal of Dental and Medical Sciences, 2016, 15(9), 78-83
[37] Tarik Arafat, M., Gibson, I., Li, X. State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering. Rapid Prototyping Journal, 2014, 20(1) 13-26.
[38] Labeas, G. N.; Sunaric, M. M. Investigation on the static response and failure process of metallic open lattice cellular structures. Strain, 2010, 46(2) 195-204.
[39] Ahmadi, S. M., Campoli, G., Yavari, S. A., Sajadi, B., Wauthlé, R., Schrooten, J., Zadpoor, A. A. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Journal of the mechanical behavior of biomedical materials, 2014 (34) 106-115.
[40] Ajdari, A., Jahromi, B. H., Papadopoulos, J., Nayeb-Hashemi, H., & Vaziri, A. Hierarchical honeycombs with tailorable properties. International Journal of Solids and Structures, ,2012, 49(11-12), 1413-1419.
[41] Sun, J., Yang, Y., & Wang, D. Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting. Advances in Mechanical Engineering, 2012, 4, 427386.
[42] Horn, T. J., Harrysson, O. L., Marcellin-Little, D. J., West, H. A., Lascelles, B. D. X., & Aman, R. Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting. Additive manufacturing, 2014, 1, 2-11.
[43] Zargarian, A., Esfahanian, M., Kadkhodapour, J., & Ziaei-Rad, S. Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods. Journal of the mechanical behavior of biomedical materials, 2014, 37, 264-273.
[44] Ravari, M. K., Kadkhodaei, M., Badrossamay, M., & Rezaei, R. Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. International Journal of Mechanical Sciences, 2014, 88, 154-161.
[45] Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., ... & Bracke, J. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1917), 1999-2032.
[46] Dong, L., Deshpande, V., & Wadley, H. Mechanical response of Ti–6Al–4V octet-truss lattice structures. International Journal of Solids and Structures, 2015, 60, 107-124.
[47] Deshpande, V. S., Fleck, N. A., & Ashby, M. F. Effective properties of the octet- truss lattice material. Journal of the Mechanics and Physics of Solids, 2001, 49(8), 1747-1769.
[48] Kadkhodapour, J., Montazerian, H., Darabi, A. C., Anaraki, A. P., Ahmadi, S. M., Zadpoor, A. A., & Schmauder, S. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. Journal of the mechanical behavior of biomedical materials, 2015, 50, 180-191.
[49] Melancon, D., Bagheri, Z. S., Johnston, R. B., Liu, L., Tanzer, M., & Pasini, D. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Acta biomaterialia, 2017, 63, 350-368.
[50] Arabnejad, S., Johnston, R. B., Pura, J. A., Singh, B., Tanzer, M., & Pasini, D. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta biomaterialia, 2016, 30, 345-356.
[51] Provaggi, E., Capelli, C., Rahmani, B., Burriesci, G., & Kalaskar, D. M.. 3D printing assisted finite element analysis for optimising the manufacturing parameters of a lumbar fusion cage. Materials & Design, 2019, 163, 107540.
[52] Dawson, E., Suzuki, R., Samano, M., & Murphy, M. Increased Internal Porosity and Surface Area of Hydroxyapatite Accelerates Healing and Compensates for Low Bone Marrow Mesenchymal Stem Cell Concentrations in Critically-Sized Bone Defects. Applied Sciences, 2018, 8(8), 1366.
[53] Huiskes, R.; Chao, Edmund YS. A survey of finite element analysis in orthopedic biomechanics: the first decade. Journal of biomechanics, 1983, 16(6) 385-409.
[54] Parashar, S. K., Sharma, J. K. A review on application of finite element modelling in bone biomechanics. Perspectives in Science, 2016, 8: 696-698.
[55] Kumar, K. N., Tandon, T., Silori, P., & Shaikh, A. Biomechanical stress analysis of a human femur bone using ANSYS. Materials Today: Proceedings, 2015, 2(4- 5), 2115-2120.
[56] Wang, X., Wang, T., Jiang, F., & Duan, Y. The hip stress level analysis for human routine activities. Biomedical Engineering: Applications, Basis and Communications, 2005, 17(03), 153-158.
[57] JADE, Sameer, et al. Finite element analysis of a femur to deconstruct the paradox of bone curvature. Journal of Theoretical Biology, 2014, 341: 53-63.
[58] Lipowiecki, M., Brabazon, D. Design of bone scaffolds structures for rapid prototyping with increased strength and osteoconductivity. In Advanced Materials Research. Trans Tech Publications, 2010. p. 914-922.
[59] Auras, R. A., Lim, L. T., Selke, S. E., & Tsuji, H. (Eds.). Poly (lactic acid): synthesis, structures, properties, processing, and applications (Vol. 10). John Wiley & Sons, 2011.
[60] MakerBot, PLA and ABS Strength Data [61] Kuboki, Y., Takita, H., Kobayashi, D., Tsuruga, E., Inoue, M., Murata, M. & Ohgushi, H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, 39(2), 190-199.
[62] Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27), 5474-5491.
[63] Liu, Y., Lim, J., & Teoh, S. H. Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology advances, 2013, 31(5), 688- 705.
[64] Zhang, Z. M., Li, Z. C., Jiang, L. S., Jiang, S. D., & Dai, L. Y. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporosis international, 2010, 21(8), 1383-1390.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73595-
dc.description.abstract結構對於骨支架的性質有著至關重要的影響,骨支架需要具有開放式的孔洞讓 養分進入供給細胞和血管的增生,越高的比表面積則有越多的面積提供細胞附著, 同時又要具備足夠的結構強度與穩定性承受手術操作與日常動作時的應力,因此 透過結構設計來解決兩性質矛盾之處,本實驗透過 3D 列印出設計的三大組(共 12 個結購)體積佔比都是 50 %的骨支架結構,包含第一組為支柱型(Z 結構), 第二組 為原子晶格型(BCC 和 FCC 結構) 和第三組為前兩組依照不同質量配比組合而成的 混合結構 (BCC-Z 和 FCC-Z),Z 軸與 XY 軸的抗壓強度都會被量測(12 個結構, 每 個方向 6 個試片, 總共 144 個 PLA 試片),並搭配有限元素分析法來解釋結構應 力分布與結構強度的關係,這使我們更了解各結構的優缺點。
在混合組中,透過調整支柱型與晶格型結構的質量配比,可以成功在一個結構(FCC Z/U1)達到高比表面積與高抗壓強度兩個優異的性質,在質量由支柱結構轉 移到內部晶格結構時,應力分布的結果顯示沒有明顯的應力遮蔽,是此結構特殊之 處。在 FCC-Z 組的應力分析中發現,結構中應力由高到低的位置可以預測抗壓強 度測試時破裂的先後順序,越高的應力集中處越早破裂。在 Square 結構中加入 Joint 結構而不改變孔隙率的前提下,強度不變且可以大大增加結構外觀與強度維持性。 此外,透過三組結構由 3D 列印製作的硫酸鈣試片來印證在 PLA 試片發現的結構 性質,並在測試XY方向抗壓強度時,觀察破裂行為以研究 3D 列印層與層之間的 介面是否是此結構中強度較弱之處。
zh_TW
dc.description.abstractThe structure is crucial to the property of scaffold. Porous structure is needed for the transportation of nutrients and cells, which is important for the cell proliferation and vascularization. The cell proliferation can be accelerated with higher specific surface area. Besides, the mechanical property of the structure must be high enough to withstand the stress during surgery and subsequent motion after implant. Therefore, structure design is important to solve the contradiction between the porous structure and the mechanical property of scaffold.
Twelve structures were designed and prepared with 3D printing using PLA material. Every structure has 50 % volume ratio and printed with 100 % infill density. The first group is pillar-structure (Z group), the second group is unit cell structure (BCC and FCC, U group) and the third group is the mixed structure of the former two groups with different mass ratio. The third group were named as BCC-Z and FCC-Z (U+Z group). The Z-axis and XY-axis compressive strength are measured for all structures (each structure has five samples for each direction, total for 120 samples). The result shows that porous structure with good compressive strength and high specific surface area can be achieved on mixed structure, FCC-Z. With the assistance of Finite Element Analysis (FEA), the relation between the stress distribution and the compressive strength of the structure can be explained. It allows us to realize the benefit and drawback of each design. The location and priority of fractures estimated by FEA stress analysis can correspond to the results in compressive testing. The Joint Square structure has much better structure sustainability and can bear more energy than Square in terms of the same strain. In addition, 3 structures made by calcium sulfate (CS) are used to prove the behavior found on PLA samples. The XY compressive testing is used to evaluate the weakness between 3D printing layers.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:32Z (GMT). No. of bitstreams: 1
ntu-108-R06527037-1.pdf: 26732352 bytes, checksum: 2c6eae463e73d7845fd73a057cbe7fd9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1Introduction 1
Chapter 2 Literature Review 3
2.1 Bone defect 3
2.1.1 Demand for curing bone defect 3
2.1.2 Bone graft 3
2.2 Synthetic bone graft 5
2.2.1 Biocompatibility 5
2.2.2 Biodegradability 6
2.2.3 Mechanical properties 6
2.2.4 Scaffold architecture 7
2.3 Scaffold structure design 7
2.3.1 Structure design with conventional techniques 7
2.3.2 Structure design with 3D printing 8
2.4 Finite element analysis for scaffold structure design 15
Chapter 3 Experiment procedures 19
3.1 Structural analysis 20
3.1.1 Structure design and design logic 20
3.1.2 Specific surface area 22
3.1.3 Stress analysis 22
3.1.3.1 Software, procedure and file input 22
3.1.3.2 Meshing setting 23
3.1.3.3 Material and boundary setting 23
3.1.3.4 Finite element model 24
3.2 Experimental Evaluation 24
3.2.1 PLA FDM printing 24
3.2.1.1 Samples dimensions and porosity 25
3.2.1.2 Compressive testing 26
3.2.2 Calcium Sulfate ink-jet printing and sintering 26
3.2.2.1 Samples dimension before and after sintering 28
3.2.2.2 Compressive testing before and after sintering 28
3.2.2.3 Morphology and fracture behavior observation 29
Chapter 4 Results 30
4.1 Simulation analysis 30
4.1.1 Specific surface area 30
4.1.2 Z-axis stress analysis 32
4.1.3 XY-axis stress analysis 41
4.2 Experimental Evaluation 47
4.2.1 PLA FDM printing 47
4.2.1.1 Samples dimension and porosity 47
4.2.1.2 Z-axis compressive strength 48
4.2.1.3 XY-axis compressive strength 53
4.2.2 Calcium sulfate specimen using Ink-Jet printing 61
4.2.1.1 Samples dimension and porosity 47
4.2.1.2 Z-axis compressive strength 48
4.2.1.3 XY-axis compressive strength 53
4.2.2 Calcium sulfate specimen using Ink-Jet printing 61
4.2.2.1 Samples’ dimension and porosity 61
4.2.2.2 Z-axis compressive strength before and after sintering 64
4.2.2.3 XY-axis compressive strength before and after sintering 72
4.2.2.4 Morphology and fracture behavior of CS samples 79
Chapter 5 Discussion 83
5.1 Simulation analysis 83
5.1.1 Specific surface area 83
5.1.2 Z-axis stress analysis 84
5.1.3 XY-axis stress analysis 84
5.2 Experiment analysis 85
5.2.1 PLA FDM printing 85
5.2.1.1 Samples dimension and porosity 85
5.2.1.2 Z-axis compressive strength 85
5.2.1.3 XY-axis compressive strength 87
5.2.2 Calcium sulfate Ink-Jet printing 88
5.2.2.1 Samples dimension and porosity 88
5.2.2.2 Z-axis compressive strength before and after sintering 88
5.2.2.3 XY-axis compressive strength before and after sintering 90
5.2.2.4 Morphology and fracture behavior of CS samples 90
5.3 Comparison between PLA 3DP simulation and compressive strength 92
Chapter 6 Conclusion 99
Chapter 7 Future work 101
REFERENCE 102
dc.language.isoen
dc.title3D列印支架結構設計與應力分析zh_TW
dc.titleStructure design and stress analysis of 3D printing scaffolden
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王兆麟,郭錦龍,唐政宏
dc.subject.keyword孔洞型支架,結構設計,3D 列印,晶格,抗壓強度,有限元素應力分析,比表面積,zh_TW
dc.subject.keywordPorous scaffold,Structure design,3D printing,Unit cell,Compressive strength,Finite element analysis,Stress distribution,Specific surface area,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201903516
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
26.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved