請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73559完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江建文(Kien Voon Kong) | |
| dc.contributor.author | Yi-Cheng Lin | en |
| dc.contributor.author | 林毅橙 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:06:04Z | - |
| dc.date.available | 2019-09-02 | |
| dc.date.copyright | 2019-09-02 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-20 | |
| dc.identifier.citation | 1. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
2. Parobek, D.; Shenoy, G.; Zhou, F.; Peng, Z.; Ward, M.; Liu, H., Synthesizing and Characterizing Graphene via Raman Spectroscopy: An Upper-Level Undergraduate Experiment That Exposes Students to Raman Spectroscopy and a 2D Nanomaterial. Journal of Chemical Education 2016, 93 (10), 1798-1803. 3. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of the Royal Society Interface 2016, 13 (118). 4. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166. 5. Félix-Rivera, H.; Hernández-Rivera, S. P., Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review. Sensing and Imaging: An International Journal 2012, 13 (1), 1-25. 6. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20. 7. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217. 8. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Duyne, R. P. V., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry 2008, 1 (1), 601-626. 9. Vestergaard, M. C.; Kerman, K.; Hsing, I. M.; Tamiya, I., Nanobiosensors and Nanobioanalyses. Springer 2015. 10. Gruenke, N. L.; Cardinal, M. F.; McAnally, M. O.; Frontiera, R. R.; Schatz, G. C.; Van Duyne, R. P., Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chemical Society Reviews 2016, 45 (8), 2263-2290. 11. Michaels, A. M.; Jiang; Brus, L., Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. The Journal of Physical Chemistry B 2000, 104 (50), 11965-11971. 12. Le Ru, E. C.; Grand, J.; Sow, I.; Somerville, W. R. C.; Etchegoin, P. G.; Treguer-Delapierre, M.; Charron, G.; Félidj, N.; Lévi, G.; Aubard, J., A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy. Nano Letters 2011, 11 (11), 5013-5019. 13. Zeman, E. J.; Schatz, G. C., An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. The Journal of Physical Chemistry 1987, 91 (3), 634-643. 14. Xu, H.; Aizpurua, J.; Käll, M.; Apell, P., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E 2000, 62 (3), 4318-4324. 15. Inoue, M.; Ohtaka, K., Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect. Journal of the Physical Society of Japan 1983, 52 (11), 3853-3864. 16. Etchegoin, P. G.; Galloway, C.; Le Ru, E. C., Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Physical Chemistry Chemical Physics 2006, 8 (22), 2624-2628. 17. Radziuk, D.; Moehwald, H., Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Physical Chemistry Chemical Physics 2015, 17 (33), 21072-21093. 18. Tokmakoff, A.; Fayer, M. D.; Dlott, D. D., Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials. The Journal of Physical Chemistry 1993, 97 (9), 1901-1913. 19. Etchegoin, P. G.; Le Ru, E. C., A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics 2008, 10 (40), 6079-89. 20. Kumar, C. S. S. R., Raman Spectroscopy for Nanomaterials Characterization. Springer: Berlin, Heidelberg, 2012. 21. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A., On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. The Journal of Chemical Physics 1998, 108 (12), 5013-5026. 22. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250. 23. Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters 2000, 318 (1), 131-136. 24. Zhang, Z.; Sheng, S.; Wang, R.; Sun, M., Tip-Enhanced Raman Spectroscopy. Analytical Chemistry 2016, 88 (19), 9328-9346. 25. Gao, L.; Zhao, H.; Li, T.; Huo, P.; Chen, D.; Liu, B., Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology. International Journal of Molecular Sciences 2018, 19 (4). 26. Taguchi, A.; Hayazawa, N.; Furusawa, K.; Ishitobi, H.; Kawata, S., Deep-UV tip-enhanced Raman scattering. Journal of Raman Spectroscopy 2009, 40 (9), 1324-1330. 27. Meng, L.; Huang, T.; Wang, X.; Chen, S.; Yang, Z.; Ren, B., Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Optics Express 2015, 23 (11), 13804-13813. 28. Schmid, T.; Yeo, B.-S.; Leong, G.; Stadler, J.; Zenobi, R., Performing tip-enhanced Raman spectroscopy in liquids. Journal of Raman Spectroscopy 2009, 40 (10), 1392-1399. 29. Yeo, B.-S.; Stadler, J.; Schmid, T.; Zenobi, R.; Zhang, W., Tip-enhanced Raman Spectroscopy – Its status, challenges and future directions. Chemical Physics Letters 2009, 472 (1), 1-13. 30. Nakata, A.; Nomoto, T.; Toyota, T.; Fujinami, M., Tip-enhanced Raman Spectroscopy of Lipid Bilayers in Water with an Alumina- and Silver-coated Tungsten Tip. Analytical Sciences 2013, 29 (9), 865-869. 31. Yu, J.; Saito, Y.; Ichimura, T.; Kawata, S.; Verma, P., Far-field free tapping-mode tip-enhanced Raman microscopy. Applied Physics Letters 2013, 102 (12), 123110. 32. Anderson, M. S., Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters 2000, 76 (21), 3130-3132. 33. Rickman, R. H.; Dunstan, P. R., Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy. Journal of Raman Spectroscopy 2014, 45 (1), 15-21. 34. Ghislandi, M.; Hoffmann, G. G.; Tkalya, E.; Xue, L.; With, G. D., Tip-Enhanced Raman Spectroscopy and Mapping of Graphene Sheets. Applied Spectroscopy Reviews 2012, 47 (5), 371-381. 35. Hansma, P. K.; Tersoff, J., Scanning tunneling microscopy. Journal of Applied Physics 1987, 61 (2), R1-R24. 36. Klingsporn, J. M.; Jiang, N.; Pozzi, E. A.; Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M. C.; Duyne, R. P. V., Intramolecular Insight into Adsorbate–Substrate Interactions via Low-Temperature, Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2014, 136 (10), 3881-3887. 37. Touzalin, T.; Dauphin, A. L.; Joiret, S.; Lucas, I. T.; Maisonhaute, E., Tip enhanced Raman spectroscopy imaging of opaque samples in organic liquid. Physical Chemistry Chemical Physics 2016, 18 (23), 15510-15513. 38. Kurouski, D.; Mattei, M.; Van Duyne, R. P., Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy. Nano Letters 2015, 15 (12), 7956-7962. 39. Zeng, Z.-C.; Huang, S.-C.; Wu, D.-Y.; Meng, L.-Y.; Li, M.-H.; Huang, T.-X.; Zhong, J.-H.; Wang, X.; Yang, Z.-L.; Ren, B., Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2015, 137 (37), 11928-11931. 40. Martín Sabanés, N.; Driessen, L. M. A.; Domke, K. F., Versatile Side-Illumination Geometry for Tip-Enhanced Raman Spectroscopy at Solid/Liquid Interfaces. Analytical Chemistry 2016, 88 (14), 7108-7114. 41. Hartschuh, A.; Qian, H.; Meixner, A.; Anderson, N.; Novotny, L., Nanoscale optical imaging of single-walled carbon nanotubes. Journal of luminescence 2006, 119, 204-208. 42. Hartschuh, A.; Anderson, N.; Novotny, L., Near-field Raman spectroscopy using a sharp metal tip. Journal of Microscopy 2003, 210 (3), 234-240. 43. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence. Physical Review Letters 2006, 96 (11), 113002. 44. Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M. Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K., Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 185, 317-335. 45. Mucha, E.; González Flórez, A. I.; Marianski, M.; Thomas, D. A.; Hoffmann, W.; Struwe, W. B.; Hahm, H. S.; Gewinner, S.; Schöllkopf, W.; Seeberger, P. H.; von Helden, G.; Pagel, K., Glycan Fingerprinting via Cold-Ion Infrared Spectroscopy. Angewandte Chemie International Edition 2017, 56 (37), 11248-11251. 46. Mandeville, C. W.; Webster, J. D.; Rutherford, M. J.; Taylor, B. E.; Timbal, A.; Faure, K., Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. American Mineralogist 2002, 87 (7), 813-821. 47. Movasaghi, Z.; Rehman, S.; ur Rehman, D. I., Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews 2008, 43 (2), 134-179. 48. Alfano, R. R.; Pradhan, A.; Tang, G. C.; Wahl, S. J., Optical spectroscopic diagnosis of cancer and normal breast tissues. Journal of the Optical Society of America.B 1989, 6 (5), 1015-1023. 49. Campa, C.; Coslovi, A.; Flamigni, A.; Rossi, M., Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: A tabulated review. Electrophoresis 2006, 27 (11), 2027-2050. 50. Wong, N. K.; Easton, R. L.; Panico, M.; Sutton-Smith, M.; Morrison, J. C.; Lattanzio, F. A.; Morris, H. R.; Clark, G. F.; Dell, A.; Patankar, M. S., Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. Journal of Biological Chemistry 2003, 278 (31), 28619-28634. 51. Zaia, J., Mass spectrometry of oligosaccharides. Mass Spectrometry Reviews 2004, 23 (3), 161-227. 52. Novotny, M. V.; Mechref, Y., New hyphenated methodologies in high‐sensitivity glycoprotein analysis. Journal of Separation Science 2005, 28 (15), 1956-1968. 53. Tang, H.; Mechref, Y.; Novotny, M. V., Automated interpretation of MS/MS spectra of oligosaccharides. Bioinformatics 2005, 21 (suppl_1), i431-i439. 54. Huang, L.; Riggin, R. M., Analysis of nonderivatized neutral and sialylated oligosaccharides by electrospray mass spectrometry. Analytical Chemistry 2000, 72 (15), 3539-3546. 55. Que, A. H.; Mechref, Y.; Huang, Y.; Taraszka, J. A.; Clemmer, D. E.; Novotny, M. V., Coupling capillary electrochromatography with electrospray Fourier transform mass spectrometry for characterizing complex oligosaccharide pools. Analytical chemistry 2003, 75 (7), 1684-1690. 56. Que, A. H.; Novotny, M. V., Separation of neutral saccharide mixtures with capillary electrochromatography using hydrophilic monolithic columns. Analytical chemistry 2002, 74 (20), 5184-5191. 57. Triantis, V.; Bode, L.; van Neerven, R. J. J., Immunological Effects of Human Milk Oligosaccharides. Front Pediatr 2018, 6, 190. 58. Fang, J.-L.; Tsai, T.-W.; Liang, C.-Y.; Li, J.-Y.; Yu, C.-C., Enzymatic Synthesis of Human Milk Fucosides α1,2-Fucosyl para-Lacto-N-Hexaose and its Isomeric Derivatives. Advanced Synthesis & Catalysis 2018, 360 (17), 3213-3219. 59. Mathlouthi, M.; Koenig, J. L., Vibrational Spectra of Carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry Volume 44, 1987; pp 7-89. 60. Mu, Y.; Schulz, B. L.; Ferro, V., Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology. Molecules 2018, 23 (10). 61. Mucha, E.; Gonzalez Florez, A. I.; Marianski, M.; Thomas, D. A.; Hoffmann, W.; Struwe, W. B.; Hahm, H. S.; Gewinner, S.; Schollkopf, W.; Seeberger, P. H.; von Helden, G.; Pagel, K., Glycan Fingerprinting via Cold-Ion Infrared Spectroscopy. Angew Chem Int Ed Engl 2017, 56 (37), 11248-11251. 62. Arboleda, P. H.; Loppnow, G. R., Raman Spectroscopy As a Discovery Tool in Carbohydrate Chemistry. Analytical Chemistry 2000, 72 (9), 2093-2098. 63. Poole, L. B.; Nelson, K. J., Discovering Mechanisms of Signaling-Mediated Cysteine Oxidation. Current Opinion in Chemical Biology 2008, 12, 18. 64. Ziegler, D., Role of Reversible Oxidation-Reduction of Enzyme Thiols-Dilsulfides in Metabolic Regulation. Annual Review of Biochemistry 1985, 54, 305. 65. Haugaard, N., Cellular Mechanisms of Oxygen Toxicity. Physiological Reviews 1968, 48, 311. 66. Barron, E. S. G., Thiol Groups of Biological Importance. Advances in Enzymology and Related Areas of Molecular Biology 2006, 11, 201. 67. Gergely, P.; VÉrtesi, C., Urinary Excretion of Thioamine Compounds in Patients with Malignant Tumors and Inflammation. Pathology and Oncology Research 1996, 2, 167. 68. Rojkovich, B.; Nagy, E.; Pröhle, T.; Poór, G.; Gergely, P., Urinary Excretion of Thiol compounds in Patients with Rheumatoid Arthritis. Clinical and Diagnostic Laboratory Immunology 1999, 6, 683. 69. Çakatay, U.; Telci, A.; Salman, S.; Satman, L.; Sivas, A., Oxidative Protein Damage in Type I Diabetic Patients With and Without Complications. Endocrine Research 2000, 26, 365. 70. Çakatay, U., Protein Oxidation Parameters in Type 2 Diabetic Patients with Good and Poor Glycaemic Control. Diabetes and Metabolism 2005, 31, 551. 71. Lin, D.; Lin, Y.-C.; Yang, S.-W.; Zhou, L.; Leong, W. K.; Feng, S.-Y.; Kong, K. V., Organometallic-Constructed Tip-Based Dual Chemical Sensing by Tip-Enhanced Raman Spectroscopy for Diabetes Detection. ACS Applied Materials & Interfaces 2018, 10 (49), 41902-41908. 72. Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C., Ferrocene-Mediated Proton-Coupled Electron Transfer in a Series of Ferrocifen-Type Breast-Cancer Drug Candidates. Angewandte Chemie International Edition 2006, 45 (2), 285-290. 73. Buriez, O.; Heldt, J. M.; Labbé, E.; Vessières, A.; Jaouen, G.; Amatore, C., Reactivity and Antiproliferative Activity of Ferrocenyl–Tamoxifen Adducts with Cyclodextrins against Hormone-Independent Breast-Cancer Cell Lines. Chemistry – A European Journal 2008, 14 (27), 8195-8203. 74. Wang, Y.; Richard, M. A.; Top, S.; Dansette, P. M.; Pigeon, P.; Vessieres, A.; Mansuy, D.; Jaouen, G., Ferrocenyl Quinone Methide-Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angewandte Chemie International Edition 2016, 55 (35), 10431-4. 75. Schatzschneider, U.; Metzler-Nolte, N., New Principles in Medicinal Organometallic Chemistry. Angewandte Chemie International Edition 2006, 45 (10), 1504-1507. 76. Chiang, N.; Jiang, N.; Madison, L. R.; Pozzi, E. A.; Wasielewski, M. R.; Ratner, M. A.; Hersam, M. C.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P., Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2017, 139 (51), 18664-18669. 77. Nguyen, D.; Kang, G.; Chiang, N.; Chen, X.; Seideman, T.; Hersam, M. C.; Schatz, G. C.; Van Duyne, R. P., Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2018, 140 (18), 5948-5954. 78. He, Z.; Han, Z.; Kizer, M.; Linhardt, R. J.; Wang, X.; Sinyukov, A. M.; Wang, J.; Deckert, V.; Sokolov, A. V.; Hu, J.; Scully, M. O., Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. Journal of the American Chemical Society 2019, 141 (2), 753-757. 79. Mrozek, M. F.; Weaver, M. J., Detection and Identification of Aqueous Saccharides by Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry 2002, 74 (16), 4069-4075. 80. Sekkal, M.; Dincq, V.; Legrand, P.; Huvenne, J. P., Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. Journal of Molecular Structure 1995, 349, 349-352. 81. Iramain, M. A.; Davies, L.; Brandán, S. A., FTIR, HATR and FT-Raman studies on the anhydrous and monohydrate species of maltose in aqueous solution. Carbohydrate Research 2016, 428, 41-56. 82. Mathlouthi, M.; Vinh Luu, D., Laser-raman spectra of d-glucose and sucrose in aqueous solution. Carbohydrate Research 1980, 81 (2), 203-212. 83. Vidal-Iglesias, F. J.; Solla-Gullón, J.; Pérez, J. M.; Aldaz, A., Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochemistry Communications 2006, 8 (1), 102-106. 84. Synytsya, A.; Čopı́ková, J.; Matějka, P.; Machovič, V., Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers 2003, 54 (1), 97-106. 85. Cael, J. J.; Koenig, J. L.; Blackwell, J., Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose. Biopolymers 1975, 14 (9), 1885-1903. 86. Bell, A. F.; Hecht, L.; Barron, L. D., Disaccharide Solution Stereochemistry from Vibrational Raman Optical Activity. Journal of the American Chemical Society 1994, 116 (12), 5155-5161. 87. Liu, Y.; Himmelsbach, D. S.; Barton, F. E., Two-Dimensional Fourier Transform Raman Correlation Spectroscopy Determination of the Glycosidic Linkages in Amylose and Amylopectin. Applied Spectroscopy 2004, 58 (6), 745-749. 88. Szlag, V. M.; Styles, M. J.; Madison, L. R.; Campos, A. R.; Wagh, B.; Sprouse, D.; Schatz, G. C.; Reineke, T. M.; Haynes, C. L., SERS Detection of Ricin B-Chain via N-Acetyl-Galactosamine Glycopolymers. ACS Sensors 2016, 1 (7), 842-846. 89. Prucek, R.; Ranc, V.; Kvitek, L.; Panacek, A.; Zboril, R.; Kolar, M., Reproducible discrimination between Gram-positive and Gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation. Analyst 2012, 137 (12), 2866-2870. 90. Bansil, R.; Yannas, I. V.; Stanley, H. E., Raman Spectroscopy: A structural probe of glycosaminoglycans. Biochimica et Biophysica Acta (BBA) - General Subjects 1978, 541 (4), 535-542. 91. Zhang, Z. F.; Cui, H.; Lai, C. Z.; Liu, L. J., Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Analytical Chemistry 2005, 77, 3324. 92. Naya, S. i.; Teranishi, M.; Kimura, K.; Tada, H., A Strong Support-Effect on the Catalytic Activity of Gold Nanoparticles for Hydrogen Peroxide Decomposition. Chemical Communications 2011, 47, 3230. 93. He, W.; Zhou, Y. T.; Wamer, W. G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M. D.; Yin, J. J., Intrinsic Catalytic Activity of Au Nanoparticles with Respect to Hydrogen Peroxide Decomposition and Superoxide Scavenging. Biomaterials 2013, 34, 765. 94. Lee, S. M.; Wong, W. T., Oxidative addition of 2,2′-Dithiosalicylic Acid to the Cluster [Os_3 (CO)_10 (CH_3 〖CN)〗_2]. Journal of Cluster Science 1996, 7, 37. 95. Kong, F. S.; Wong, W. T., Synthesis and Structural Characterisation of Osmium Carbonyl Clusters Containing Azo Ligands. Journal of Organometallic Chemistry 1999, 589, 180. 96. Psaro, R.; Ugo, R.; Zanderighi, G. M.; Besson, B.; Smith, A. K.; Basset, J. M., Surface-Supported Metal Cluster Carbonyls. Chemisorption, Decomposition And Reactivity of Os_3 (CO)_12, 〖H_2 Os〗_3 (CO)_10 And Os_6 (CO)_8 Supported On Silica And Alumina And The Investigation Of The Fischer-Tropsch Catalysis With These Systems. Journal of Organometallic Chemistry 1981, 213, 215. 97. Anders, U.; Graham, W. A. G., Organometallic Compounds with Metal-Metal Bonds. VI. Preparation and Infrared Spectra of the Carbonylmetalate Ions [ (OC)_5M-M′(CO)_5]-(M = Mn, Re; M′ = Cr, Mo, W). Journal of the American Chemical Society 1967, 89, 539. 98. Li, C.; Fan, W. Y.; Leong, W. K., Osmium Carbonyl Clusters on Gold and Silver Nanoparticles as Models for Studying the Interaction with the Metallic Surface. Journal of Physical Chemistry C 2009, 113, 18562. 99. Kong, K. V.; Lam, Z.; Goh, W. D.; Leong, W. K.; Olivo, M., Metal Carbonyl-Gold Nanoparticle Conjugates for Live-Cell SERS Imaging. Angewandte Chemie International Edition 2012, 51, 9796. 100. Kim, K.; Lee, J. W.; Choi, J. Y.; Shin, K. S., pH Effect on Surface Potential of Polyelectrolytes-Capped Gold Nanoparticles Probed by Surface-Enhanced Raman Scattering. Langmuir 2010, 26, 19163. 101. ChunXiang, L., Organometallic clusters as precursors of metallic nanoparticles. Ph. D. Thesis: National University of Singapore, Singapore, 2007. 102. Kim, K.; Lee, J. W.; Shin, D.; Kim, K. L.; Shin, K. S., Surface Potential of Au Nanoparticles Affected by Layer-by-Layer Deposition of Polyelectrolytes: A Surface-Enhanced Raman Scattering Study. Journal of Physical Chemistry B 2010, 114, 9917. 103. Kim, K.; Lee, J. W.; Shin, D.; Choi, J. Y.; Shin, K. S., Organic Isocyanide-Adsorbed Gold Nanostructure: A SERS Sensory Device for Indirect Peak-Shift Detection of Volatile Organic Compounds. Analyst 2012, 137, 1930. 104. Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C., Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano 2010, 4, 7451. 105. Valdes, T. I.; Moussy, F., In Vitro and In Vivo Degradation of Glucose Oxidase Enzyme Used for an Implantable Glucose Biosensor. Diabetes Technol. Therapeut. 2000, 2, 367. 106. Costantini, F.; Tiggelaar, R.; Sennato, S.; Mura, F.; Schlautmann, S.; Bordi, F.; Gardeniers, H.; Manetti, C., Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip. Analyst 2013, 138 (17), 5019-5024. 107. Stammreich, H.; Teixeirasans, T., Molecular Vibrations of Quinones. Iv. Raman Spectra of P-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies. Journal of Chemical Physics 1965, 42, 920-31. 108. Hamels, D.; Dansette, P. M.; Hillard, E. A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D., Ferrocenyl Quinone Methides as Strong Antiproliferative Agents: Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols. Angewandte Chemie International Edition 2009, 48 (48), 9124-9126. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73559 | - |
| dc.description.abstract | 這份論文主要會分為四個章節:第一章會概要介紹表面增強拉曼散射 (Surfaced-Enhanced Raman Scattering, SERS)和尖端增強拉曼散射 (Tip-Enhanced Raman Scattering, TERS)。我們將簡要回顧SERS和TERS的發展和應用的相關文獻。在研究中使用的所有化學藥品和實驗流程會在第二章中描述。
在第三章的第一部份,我們會探討發展以SERS為基礎,針對醣類的靈敏度以低樣品體積分析方法之可能性。這是和中正大學化生系游景晴老師合作的計畫,由游老師提供不同類型的寡聚醣作為我們的研究材料。我們發現SERS是一項靈敏的技術,能夠分辨由酵素合成的不同寡聚醣結構關係。這開啟了理解醣類合成機制新的研究方式。 在第三章的第二部份,我們記述結合有機金屬分子的TERS探針之製備,也展示了有機金屬化學領域與TERS技術的完美結合可應用於雙重分子的訊號偵測。由有機金屬分子所產生的獨特拉曼訊號可以避開來自血液中生化分子的干擾,因而讓對兩個重要指標分子(葡萄糖和硫醇)在極低樣品需求量 (50 nL)下進行快速分析變得可行。這建立起在血液中葡萄糖和硫醇的含量對糖尿病患者與否的關聯性研究潛力。 在第三章的第三部份,我們描述一個新方法能夠直接量測Ferrocifen (Fe-Tam;一種以二茂鐵為基底的藥物)在細胞中的反應中間體。解明其抗增殖行為具有重大意義,能夠幫助合理設計有更有效機制的新穎化療藥物,以及開發化學方法以避免特定抗藥性機轉。在實驗中,可以觀察到明確的振動特徵訊號代表二茂鐵基醌甲基化物 (Fe-Tam-QM)於細胞內的生成以及其進一步和細胞中親核試劑之反應。由我們的合作者中研院化學所江明錫老師與朱愷悌博士協助密度泛函理論計算 (density functional theory, DFT),證明了振動模式的改變來自於不同二茂鐵基相關之結構。以上結果啟發了對二茂鐵基藥物的完整了解和開發更多金屬基底之治療藥物的可能性。 在第四章,我們列出這份研究工作中的主要結論。此外,我們也討論這份工作遇到的限制和失敗,強調這領域中未來的研究方向。 | zh_TW |
| dc.description.abstract | The thesis is divided into four chapters. Chapter 1 gives a brief introduction to surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). Literature reports on development and applications of SERS and TERS are discussed in brief. All the experimental and chemicals used in this projects are listed in chapter 2.
In first part of chapter 3, we discuss our exploration of the possibility of development of SERS-based sensitive technique with ultra-low volume for carbohydrates. This is a collaboration project with Prof. Ching-Ching Yu in National Chung Cheng University (Department of Chemistry and Biochemistry). Prof. Yu provided different types of oligosaccharides in our study. Our findings show that SERS is a sensitive technique that is able to characterize the structure-property relationship of oligosaccharides synthesized by enzymes which opens a new way to realize mechanisms of carbohydrates synthesis. In second part of chapter 3, we report the preparation of an organometallic-conjugated TERS tip. We demonstrate that organometallic chemistry can be perfectly coupled with TERS for dual-molecule sensing. The unique Raman signals generated by the organometallic compound circumvent signal interference from the biomolecules in blood, allowing the rapid analysis of two important molecules (glucose and thiol) in ultralow volume (50 nL) samples. This enabled a correlation between the thiol and glucose levels in the blood of nondiabetic and diabetic patients to be drawn. The third part of chapter 3 describes a method that can directly detect intermediates of ferrocifen (Fe-Tam; a ferrocene-based drug) in cells which is of paramount importance to unravel their anti-proliferative action that rationally design new chemotherapy drugs with a more effective mechanism of action and develop chemical strategies to circumvent specific drug resistance mechanism. In the experiment, distinct vibrational features are observed for the formation of ferrocenyl quinone methide (Fe-Tam-QM) in cellular and toward reacts with cellular nucleophiles. DFT calculations from our collaborators (Prof Ming-Hsi Chiang and Dr Kai-Ti Chu) in Institute of Chemistry of academic sinica show the observed vibrational mode changes is resulted in the different configuration of ferrocenyl-related modes. These results shed light on the full understanding of the ferrocenyl-based medicine and developing more advanced metal-based therapy agents. In chapter 4, we list out the major conclusions arrived at in this work. In addition, we discuss the limitations and major failures of this work and highlight the scope for future research in this area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:06:04Z (GMT). No. of bitstreams: 1 ntu-108-R06223167-1.pdf: 3167401 bytes, checksum: 149fbdc6f528dd020b2a3da05f56eb60 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VIII 第一章 緒論 1 1.1 拉曼光譜 (Raman spectroscopy)的發展與特性 1 1.2 表面增強拉曼散射 (Surfaced-Enhanced Raman Scattering, SERS) 3 1.2.1 發展 3 1.2.2 電磁增強效應 (Electromagnetic Field Enhancement) 3 1.2.3 熱點效應 (Hot Spots) 4 1.2.4 化學增強效應 (Chemical Enhancement) 4 1.3 尖端增強拉曼散射 (Tip-Enhanced Raman Scattering, TERS) 6 1.3.1 發展 6 1.3.2 原子力顯微術為底之尖端增強拉曼散射 (Atomic Force Microscopy Based Tip Enhanced Raman Spectrum, AFM-TERS) 6 1.3.3 掃瞄穿隧顯微術為底之尖端增強拉曼散射 (Scanning Tunneling Microscopy Based Tip Enhanced Raman Spectrum, STM-TERS) 7 1.3.4 剪力顯微術為底之尖端增強拉曼散射 (Shear Force Microscopy Based Tip Enhanced Raman Spectrum, SFM-TERS) 7 1.4 常見醣類分析技術與拉曼光譜學之比較 8 1.4.1 遠紅外光譜學 (Infrared Spectroscopy, IR) 8 1.4.2 質譜法 (Mass Spectrometry, MS) 8 研究動機 9 第二章 實驗方法 11 2.1 化學藥品 11 2.2 實驗儀器 11 2.2.1 拉曼光譜儀 (Raman Microscope) 11 2.2.2 場發射掃瞄式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 12 2.2.3 原子力顯微鏡系統 (Atomic Force Microscopy, AFM) 12 2.3 實驗步驟 12 2.3.1 SERS之醣類鑑定 12 2.3.1.1 寡聚醣分子SERS訊號量測 12 2.3.1.2 寡聚醣酵素合成SERS訊號量測 13 2.3.2 TERS之雙重化合物量測實驗 14 2.3.2.1 TERS探針修飾有機金屬分子 14 2.3.2.2 有機金屬探針和H_2 O_2濃度關係量測 15 2.3.2.3 有機金屬探針對葡萄糖和硫醇訊號的同步量測 15 2.3.3 TERS 之Fe-Tam氧化與細胞內量測實驗 15 2.3.3.1 TERS探針修飾金奈米粒子 15 2.3.3.2 Fe-Tam氧化反應TERS訊號量測 16 2.3.3.3 單一活體細胞內TERS訊號量測 17 第三章 結果與討論 18 3.1 SERS醣類分析 18 3.1.1 FJL-B2、Gal和Glc三者的拉曼光譜比較 18 3.1.2 GlcNAc、FJL-B2和TWT-B3三者的拉曼光譜比較 20 3.1.3 Gal、TWT-B3和TWT-B4三者的拉曼光譜比較 21 3.1.4 單醣數量與拉曼訊號強度之關係 23 3.1.5 醣類合成反應隨時間之拉曼訊號變化 24 3.1.6 結果整理 25 3.2 有機金屬修飾TERS探針對雙重化合物之偵測分析 26 3.2.1 TERS探針之有機金屬修飾結果 26 3.2.2 TERS強度與樣品濃度關係分析 29 3.2.3 TERS特徵峰值偏移現象探討 30 3.2.4 對葡萄糖和硫醇TERS訊號的同步量測 34 3.2.5 結果整理 35 3.3 TERS在單細胞中對二茂鐵抗癌藥物反應中間物直接觀測之應用 35 3.3.1 Fe-Tam的氧化反應觀測 35 3.3.2 DFT理論計算與實驗結果比較 36 3.3.3 Fe-Tam-QM和cysteine反應觀測 40 3.3.4 細胞內TERS訊號量測結果分析 41 3.3.5 結果整理 43 第四章 結論 45 第五章 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乳癌治療 | zh_TW |
| dc.subject | 拉曼光譜 | zh_TW |
| dc.subject | 表面增幅拉曼散射 | zh_TW |
| dc.subject | 針尖增幅拉曼散射 | zh_TW |
| dc.subject | 醣類分析 | zh_TW |
| dc.subject | 有機金屬化學 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 二茂鐵基底藥物 | zh_TW |
| dc.subject | tip-enhanced Raman scattering | en |
| dc.subject | ferrocene-based drug | en |
| dc.subject | diabetes | en |
| dc.subject | organometallic chemistry | en |
| dc.subject | carbohydrates identification | en |
| dc.subject | Raman spectroscopy | en |
| dc.subject | surfaced-enhanced Raman scattering | en |
| dc.subject | breast cancer therapy | en |
| dc.title | TERS和SERS於醣類分子與二茂鐵基底藥物分析之應用 | zh_TW |
| dc.title | Application of TERS and SERS to Carbohydrates and Ferrocene-based Drugs Characterization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳振中(Chun Chung Chan),游景晴(Ching-Ching Yu) | |
| dc.subject.keyword | 拉曼光譜,表面增幅拉曼散射,針尖增幅拉曼散射,醣類分析,有機金屬化學,糖尿病,二茂鐵基底藥物,乳癌治療, | zh_TW |
| dc.subject.keyword | Raman spectroscopy,surfaced-enhanced Raman scattering,tip-enhanced Raman scattering,carbohydrates identification,organometallic chemistry,diabetes,ferrocene-based drug,breast cancer therapy, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201904062 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
