Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳琪芳
dc.contributor.authorChuan-Hsuan Chaoen
dc.contributor.author趙傳軒zh_TW
dc.date.accessioned2021-06-17T08:06:01Z-
dc.date.available2020-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-20
dc.identifier.citation[1] B. Addis, 'A brief history of design methods for building acoustics,' presented at the Third International Congress on Construction History, Cottbus, 2009.
[2] W. C. Sabine, Collected papers on acoustics. 1922.
[3] C. C. J. M. Hak, R. H. C. Wenmaekers, and L. C. J. van Luxemburg, 'Measuring room impulse responses : impact of the decay range on derived room acoustic parameters,' Acta Acustica united with Acustica, vol. 98, pp. 907-915, 2012.
[4] Z. Fulin, W. Bin, and F. Jun, 'Simulation Study on Measuring Structural Surface Impedance in Air Reverberation Room,' presented at the 中國海洋聲學研討會(COA), Harbin, China, 2016.
[5] M. Vorländer, 'Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm,' The Journal of the Acoustical Society of America, vol. 86, 1989.
[6] Q. Li, D. Shang, D. Shang, and R. Tang, 'Sound source performance measurement take in reverberant tank with reverberation method,' presented at the ICSV 21, Beijing,China, 2014.
[7] IEC 60565 Underwater acoustics hydrophone calibration in the frequency range 0.01 Hz to 1MHz, 2006.
[8] T. Akamatsu, T. Okumura, N. Novarini, and H. Y. Yan, 'Empirical refinements applicable to the recording of fish sounds in small tanks,' The Journal of the Acoustical Society of America, vol. 112, no. 6, pp. 3073-3082, 2002.
[9] 陳建宏, '莎姆金鱗魚、赤松毬魚、與刺棘鱗魚(金鱗魚科)擾動聲音之辨識,' 碩士論文, 國立中山大學 海下技術研究所, 2006.
[10] L. J. M. William K. Blake, 'Chamber for reverberant acoustic power measurements in air and in water,' The Journal of the Acoustical Society of America, vol. 57, no. 380, 1975.
[11] ISO 3382-1 (en) Acoustics — Measurement of room acoustic parameters — Part 1: Performance spaces, 2009.
[12] M. R. Schroeder, 'New method of measuring reverberation time,' The Journal of the Acoustical Society of America, vol. 37, 1965.
[13] W.T.Chu, 'Comparison of reverberation measurements using Schroeder’s impulse method and decay-curve averaging method,' The Journal of the Acoustical Society of America, vol. 63, 1978.
[14] M. Meissner, 'Evaluation of Decay Times from Noisy Room Responses with Pure-Tone Excitation,' Archives of Acoustics, vol. 38, pp. 47-54, 2013.
[15] H. Kuttruff, Room Acoustics. 2009.
[16] C. F. Eyring, 'Reverberation Time in 'Dead' Rooms,' Acoustical Society of America, vol. 1, 1930.
[17] a. M. S. K.B.Ginn, Architectural Acoustics. Briiel & Kjaer, 1978.
[18] A. Q. Rincón, 'Measurement of the sound-absorption coefficient on egg cartons using the Tone Burst Method,' in 11th WSEAS International Conference on ACOUSTICS & MUSIC: THEORY & APPLICATIONS (AMTA'10) Iasi, Romania 2010, pp. 24-29 World Scientific and Engineering Academy and Society (WSEAS)
[19] D. Pleban, 'Method of testing of sound absorption properties of materials intended for ultrasonic noise protection,' Archives of Acoustics, vol. 38, no. 2, pp. 191-195, 2013.
[20] Y. Zhao, L. N. Egab, W. Chen, H. Wei, and X. Wang, 'Development of 45° incident angle sound absorption coefficient test device for design of vehicle interior trim sound package,' presented at the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada, 2014.
[21] 'COMSOL Acoustics Module User's Guide.'
[22] 馬大猷 and 楊訓仁, 聲學漫談. 1996.
[23] (2017). 了解船舶模型测试——建造及设施类型. Available: https://news.hsdhw.com/452810
[24] 交通部中央氣象局. 氣象觀測資料 [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
[25] (2004). Speed of Sound in Water. Available: https://www.engineeringtoolbox.com/sound-speed-water-d_598.html
[26] R. J. Bobber, Underwater Electroacoustic Measurements. Florida: Navel Reasrch Laboratory, 1969.
[27] 馬大猷, 現代聲學理論基礎. 北京: 科學出版社, 2004.
[28] COMSOL®模擬問題解決-3. Available: http://www.pitotech.com.tw/contents/zh-tw/p14486.html
[29] W. Frei. (2013). Meshing Your Geometry: When to Use the Various Element Types. Available: https://uk.comsol.com/blogs/meshing-your-geometry-various-element-types/?setlang=1
[30] W. Frei. (2013). Solutions to Linear Systems of Equations: Direct and Iterative Solvers. Available: https://uk.comsol.com/blogs/solutions-linear-systems-equations-direct-iterative-solvers/?setlang=1
[31] F. Ollendorff, 'Statistische Raumakustik als Diffusionsproblem (ein Vorschlag),' Acta Acustica united with Acustica, vol. 21, pp. 236-245, 1969.
[32] L. S. J. Picaut , and J.-D. Polack, 'Sound field in long rooms with diffusely reflecting boundaries,' Applied Acoustics vol. 56, pp. 217-240, 1999.
[33] J.-D. P. J. Picaut, and L. Simon, 'A mathematical model of diffuse sound field based on a diffusion equation,' Acta Acustica united with Acustica, vol. 83, pp. 614–621, 1997.
[34] J. Picaut, L. Simon, and J. Hardy, 'Sound field modeling in streets with a diffusion equation,' The Journal of the Acoustical Society of America vol. 106, 1999.
[35] V. Valeau, J. Picaut, and M. Hodgson, 'On the use of a diffusion equation for room-acoustic prediction,' The Journal of the Acoustical Society of America, vol. 119, 2006.
[36] a. N. X. Yun Jing, 'A modified diffusion equation for room-acoustic predication,' The Journal of the Acoustical Society of America, vol. 121, pp. 3284–3287, 2007.
[37] A. Billon, J. Picaut, and A. Sakout, 'Prediction of the reverberation time in high absorbent room using a modified-diffusion model,' Applied Acoustics, vol. 69, pp. 68–74, 2008.
[38] Y. Jing and N. Xiang, 'On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments,' The Journal of the Acoustical Society of America vol. 123, pp. 145–153, 2008.
[39] H. F. Philip M. Morse, Methods of Theoretical Physics. New York: McGRAW-HILL BOOK COMPANY, 1953.
[40] A. Fick, 'Ueber Diffusion,' Annalen der Physik(in German). vol. 94, pp. 59–86, 1855.
[41] U. J. Kurze, 'Scattering of Sound in Industrial Spaces ' Journal of Sound and Vibration vol. 83, pp. 349-364, 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73554-
dc.description.abstract針對目前水下聲學應用的測試場域除了開放水域外,就是室內的水槽或游泳池量測,而於開放水域使用上會耗費許多人力和金費等資源,因此若非具有實海域實驗的必要性,本實驗室人員從過去到現在許多聲學應用通常都於臺灣大學工程科學與海洋工程系上的船模水槽測試,而以非無響水槽測試勢必會有許多環境因素干擾,此研究目的為了解此水槽之聲學性質而作一系列測試和模擬驗證。
量測部分包含環境噪音、吸音係數、餘響時間。環境噪音量測為短、長時間兩部份,分別研究整體水槽之聲場於地域性和時域性上的變化,並同時記錄水溫和氣溫。吸音係數是以水為本體四周的邊界聲強損耗(如:牆壁、與空氣接觸的表面等)作為吸音係數的量測,而水槽內邊界使用脈衝方法(Tone burst)分別量測訊號直接聲壓和反射聲壓,並以此比值去計算吸音係數。餘響時間是觀察單頻正弦波於水槽之聲壓衰減行為,以衰減曲線平均法(Decay curve average method,DCAM)降低窄頻訊號於能量衰減曲線的波動,並使用包絡線平均(Envelope mean)平滑化衰減曲線,得出餘響時間參數早期衰減時間(Early decay time,EDT)、T_20、T_30。模擬部份則是使用軟體COMSOL Multiohysics內的有限分析方法去計算得出餘響時間參數值與實驗量測值比較。
研究結果顯示環境噪音由於水體夠大,水溫短時間內不被氣溫所影響,而水槽內存在一60赫茲倍頻之運轉噪音,吸音係數的牆面吸收能力,小於4kHz之吸音係數為0.974,其餘頻率下大多分布為0.6~0.7,不論是EDT、T_20、T_30,餘響時間在水槽內部都小於0.5秒內,並且顯示水槽內部空間可能存在不只單一空間,導致衰減曲線不具單一線性衰減,使得餘響時間被整體拉長,餘響時間參數實驗值呈現於此水槽使用EDT比T_20和T_30的結果來得好,而T_30目前不適用於此水槽。
zh_TW
dc.description.abstractIn addition to open water, underwater acoustic testing is conduced in a tank or indoor swimming pool, as testing in open water costs considerable manpower, money, and other resources. So, if there is no requirement to test in open water experiments, the Underwater Acoustic Laboratory (UAL) from Department of Engineering Science and Ocean Engineering at National Taiwan University (NTU) usually does underwater acoustic testing in a shipping modal testing tank. As the original use was not for acoustical testing, interference from many environmental factors exists. This research project will help one understand the acoustic properties of the tank, and it gives a series of tests and simulations to verify findings.
The items of measurement includes ambient noise, sound absorption coefficient and reverberation time. The ambient noise measurement was separated into two parts: short time and long time. The measurement in short time is spatially varying, and the measurement in long time is time varying while concurrently recording temperature in air and water. The sound absorption coefficient measures the sound intensity of the boundaries around the tank(such as walls, surfaces in contact with air, etc.), while measuring both the direct sound pressure and the reflected sound pressure of the signal by the Tone burst method. The reverberation time shows the attenuation behavior of pure tone energy in the tank, where the fluctuating signal on the energy attenuation curve is reduced using the decay curve average method (DCAM), and the envelope mean is used to smooth the decay curve, which eventually results in reverberation time parameters like early decay time (EDT), T_20and T_30. The simulation utilizes room acoustic concepts in the water, and the calculation module is based on statistical acoustics theory, and is called the diffusion equation. Its boundary condition is found by adding the measured sound absorption coefficient to the Eyring absorption model. Finally, verifications is through comparing the theoretical reverberation time with the measured value.
The results showed that, due to the body of water being big enough, the air temperature does not affect the water temperature in short time, and the tank exists within the 60 Hz octave band. The sound absorption coefficient of the side walls at frequencies less than 4 kHz is up to 0.974, with other frequencies being 0.6 ~ 0.7. All of the reverberation time parameter EDT, T_20, T_30 is within 0.5 seconds, The results display that it may have coupled room effect caused by multiple spaces existing in the tank, which makes the decay curve not have linear attenuation, resulting in extension of the reverberation time. The experimental data show that EDT is better than T_20, T_30 in 4kHz ~ 10kHz.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:01Z (GMT). No. of bitstreams: 1
ntu-108-R04525103-1.pdf: 20669972 bytes, checksum: c1c7d3c29197bb71b50757d4f31a9353 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第一章 緒論 10
1.1 研究背景 10
1.2 論文目的 12
1.3 文獻回顧 13
1.4 論文架構 16
第二章 理論介紹 17
2.1 有限元素分析法 17
2.2 簡正模態(Normal mode) 19
第三章 實驗數據與分析 23
3.1 實驗場地介紹 23
3.2 儀器設備 24
3.3 環境噪音 26
3.4 吸音係數 34
3.5 餘響時間 41
第四章 COMSOL模擬分析 53
4.1 COMSOL模擬建模與流程 53
4.2 模擬參數、網格和計算設定 55
4.3 模擬結果 58
4.4 實驗與模擬比較結果 69
第五章 結論與建議 76
參考文獻 78
附錄一 擴散聲學理論 81
dc.language.isozh-TW
dc.subjectCOMSOLzh_TW
dc.subject環境噪音zh_TW
dc.subject吸音係數zh_TW
dc.subject餘響時間zh_TW
dc.subjectReverberation timeen
dc.subjectCOMSOLen
dc.subjectSound absorption coefficienten
dc.subjectAmbient noiseen
dc.title台大船模水槽之水下聲學性質量測zh_TW
dc.titleUnderwater Acoustic Characteristics of the Towing Tank at National Taiwan Universityen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王崇武,王昭男,魏瑞昌
dc.subject.keyword環境噪音,吸音係數,餘響時間,COMSOL,zh_TW
dc.subject.keywordAmbient noise,Sound absorption coefficient,Reverberation time,COMSOL,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201903945
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
20.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved