請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施吉昇 | |
| dc.contributor.author | Yao-Ting Wang | en |
| dc.contributor.author | 王耀霆 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:05:59Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-20 | |
| dc.identifier.citation | [1] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep con- volutional networks,” IEEE Transactions on Pattern Analysis and Machine Intelli- gence, vol. 38, no. 2, pp. 295–307, Feb 2016.
[2] “FLIR LEPTON® 3 Long Wave Infrared (LWIR) Datasheet,” https://media.digikey.com/pdf/Data [3] “Infrared Array Sensor Grid-EYE (AMG88) Datasheet,” https://datasheet.octopart.com/AMG8833-Panasonic-datasheet-62338626.pdf. [4] “Aging and health statistics from World Health Organization,” https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. [5] S. Mashiyama, J. Hong, and T. Ohtsuki, “Activity recognition using low resolution infrared array sensor,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 495–500. [6] T. Kawashima, Y. Kawanishi, I. Ide, H. Murase, D. Deguchi, T. Aizawa, and M. Kawade, “Action recognition from extremely low-resolution thermal image se- quence,” in 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Aug 2017, pp. 1–6. [7] L. Tao, T. Volonakis, B. Tan, Y. Jing, K. Chetty, and M. Smith, “Home activity monitoring using low resolution infrared sensor,” CoRR, vol. abs/1811.05416, 2018. [Online]. Available: http://arxiv.org/abs/1811.05416 [8] Jianchao Yang, J. Wright, T. Huang, and Yi Ma, “Image super-resolution as sparse representation of raw image patches,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, June 2008, pp. 1–8. [9] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861– 2873, Nov 2010. [10] X. Chen, G. Zhai, J. Wang, C. Hu, and Y. Chen, “Color guided thermal image super resolution,” in 2016 Visual Communications and Image Processing (VCIP), Nov 2016, pp. 1–4. [11] F. Almasri and O. Debeir, “Rgb guided thermal super-resolution enhancement,” in 2018 4th International Conference on Cloud Computing Technologies and Applica- tions (Cloudtech), Nov 2018, pp. 1–5. [12] “Leptonic framwork for working with FLIR® Lepton® 3 LWIR camera modules.” https://github.com/themainframe/leptonic. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73552 | - |
| dc.description.abstract | 隨著世界人口步入高齡化社會,遠距長照系統的需求逐漸增加,而 系統中常使用攝影機作為工具,其中紅外線攝影機比起一般彩色攝影 機能夠不受光照的影響,更適用於觀測年長者在夜晚時的活動及危險 情況 。雖然高解析度的紅外線攝影機擁有較多特徵可以解析影像的內 容,但高解析度紅外線攝影機的價格相較於彩色相機昂貴許多,且在 重視資料傳輸速率與儲存空間的物聯網系統中,長時間收集的高解析 度熱影像資料過於龐大。根據以上兩個原因,我們採用低解析度的紅 外線攝影機做為我們的主要感測設備。
在這份研究中,我們使用多個極低解析度的熱影像感測器,藉由 紅外線攝影機之間的位置關係重建出較清楚的熱影像。由於低解析度 紅外線攝影機的偵測距離有限,我們固定攝影機與偵測環境之間的距 離,使攝影機能夠看到受測者完整的身形。接著以高解析度紅外線 影像作為標籤,使用深層卷積網路強化多重低解析度熱影像之解析 度。我們的貢獻是能夠使用多個低解析度熱影像重建出受測者的溫 度分佈以及身體和軀幹的形狀,經過超解析度熱影像的PSNR可以達 到20.506dB,且使用超解度影像達到的動作辨識率相較於使用低解析 度熱影像得到12%的改善,另外以高解析度熱影像之動作辨識率為最 佳表現,我們的準確率可以達到最佳辨識率的96.74%。 | zh_TW |
| dc.description.abstract | As the world population enters an aging society, the demand for (remote) long-term care systems is gradually increasing. In the long-term care sys- tems, cameras are commonly used for observing the activity of the subject and detecting the dangerous circumstances. However, RGB camera may re- veal the privacy and infrared camera is more suitable devices than RGB cam- era because it is not sensitive to illumination. Although the high-resolution thermal camera can collect more features to analyze, it is also much more ex- pensive than RGB camera. Furthermore, high-resolution thermal image data collected over a long period of time is unbearable burden for the IoT system which may suffer from low transmission rate and limited storage space. For the two reasons above, we adopt the low-resolution infrared camera in our research.
In this work, we used multiple low-resolution thermal images to fuse a clear thermal image through the positional relationship between the infrared cameras. Then we use high-resolution thermal images as labels to train the deep convolutional network. Due to the limitation of the detecting distance of low-resolution thermal camera, in this work the distance between the suubject and cameras is fixed. Our goal is to reconstruct the shape and the tempera- ture distribution of human body in low-resolution thermal images. For the super-resolution result, the PSNR is 20.506 dB on the testing set. For the ac- tivity recognition, the accuracy of SR thermal image has 12% improvement compare to fused thermal image and achieve 96.74% of the optimal accuracy with high-resolution thermal image. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:05:59Z (GMT). No. of bitstreams: 1 ntu-108-R05922090-1.pdf: 4256170 bytes, checksum: 9029362e08bd487db6de7aeeb6cb1448 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 2 1.3 ThesisOrganization 3 2 Background and Related Work 4 2.1 Background 4 2.1.1 SparseCodingBasedSuper-Resolution 4 2.1.2 DeepLearningBasedSuper-Resolution 6 2.2 RelatedWorks 7 3 System Architecture and Problem Definition 10 3.1 SystemArchitecture 10 3.2 ProblemDefinition 12 3.3 Challenges 12 4 Design and Implementation 13 4.1 Preprocessing for High-Reaolution Thermal Image 13 4.2 Preprocessing for Low-Reaolution Thermal Image 15 4.2.1 BackgroundCalibration 15 4.2.2 ImageFusion 17 4.3 TrainingProcess 19 5 Performance Evaluation 21 5.1 TrainingLoss 21 5.2 Super-ResolutionResults 22 5.3 ActivityRecognition 26 6 Conclusion 28 Bibliography 29 | |
| dc.language.iso | en | |
| dc.subject | 紅外線影像 | zh_TW |
| dc.subject | 多重影像重建 | zh_TW |
| dc.subject | 超解析度 | zh_TW |
| dc.subject | 深層卷積網路 | zh_TW |
| dc.subject | infrared image | en |
| dc.subject | multiple images | en |
| dc.subject | deep convolutional network | en |
| dc.subject | super-resolution | en |
| dc.title | 使用深層卷積網路實現多重極低解析熱影像之超解析影像重建 | zh_TW |
| dc.title | Multiple-Image Super-Resolution for Extremely Low-Resolution Thermal Images Using Deep Convolutional Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 辛賢楷,林忠緯 | |
| dc.subject.keyword | 超解析度,多重影像重建,紅外線影像,深層卷積網路, | zh_TW |
| dc.subject.keyword | super-resolution,multiple images,infrared image,deep convolutional network, | en |
| dc.relation.page | 30 | |
| dc.identifier.doi | 10.6342/NTU201904039 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
