請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73549
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周信宏(Hsin-Hung Chou) | |
dc.contributor.author | Mei-Ying He | en |
dc.contributor.author | 何美瑩 | zh_TW |
dc.date.accessioned | 2021-06-17T08:05:57Z | - |
dc.date.available | 2021-04-07 | |
dc.date.copyright | 2021-04-07 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-03-13 | |
dc.identifier.citation | Chapter I. 1. Verma, N.; Singh, M., Biosensors for heavy metals. Biometals 2005, 18 (2), 121-9. 2. Nies, D. H., Microbial heavy-metal resistance. Appl Microbiol Biotechnol 1999, 51: 730-750. 3. Hossain, S.; Latifa, G. A.; Prianqa; Al Nayeem, A., Review of Cadmium Pollution in Bangladesh. J Health Pollut 2019, 9 (23), 190913. 4. Jarup, L., Cadmium overload and toxicity. Nephrol Dial Transplant 2002, 17 Suppl 2, 35- 9. 5. Permina, E. A.; Kazakov, A. E.; Kalinina, O. V.; Gelfand, M. S., Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 2006, 6, 49. 6. Bereza-Malcolm, L. T.; Mann, G.; Franks, A. E., Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. Acs Synthetic Biology 2015, 4 (5), 535-546. 7. Goers, L.; Kylilis, N.; Tomazou, M.; Wen, K. Y.; Freemont, P.; Polizzi, K., Engineering Microbial Biosensors. Method Microbiol 2013, 40, 119-156. 8. Park, M.; Tsai, S. L.; Chen, W., Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors-Basel 2013, 13 (5), 5777-5795. 9. Guo, Y. M.; Zhang, Y.; Shao, H. W.; Wang, Z.; Wang, X. F.; Jiang, X. Y., Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal Chem 2014, 86 (17), 8530-8534. 10. Zhang, L. F.; Hu, W. P.; Yu, L. P.; Wang, Y., Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd-2. Chem Commun 2015, 51 (20), 4298- 4301. 11. Gu, M. B.; Mitchell, R. J.; Kim, B. C., Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 2004, 87, 269-305. 12. Yagi, K., Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007, 73 (6), 1251-8. 13. Wu, C. H.; Le, D.; Mulchandani, A.; Chen, W., Optimization of a Whole-Cell Cadmium Sensor with a Toggle Gene Circuit. Biotechnol Progr 2009, 25 (3), 898-903. 14. Tao, H. C.; Peng, Z. W.; Li, P. S.; Yu, T. A.; Su, J., Optimizing cadmium and mercury specificity of CadR-based E-coli biosensors by redesign of CadR. Biotechnol Lett 2013, 35 (8), 1253-1258. 15. Tauriainen, S.; Karp, M.; Chang, W.; Virta, M., Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 1998, 13 (9), 931-938. 16. Joe, M. H.; Lee, K. H.; Lim, S. Y.; Im, S. H.; Song, H. P.; Lee, I. S.; Kim, D. H., Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioproc Biosyst Eng 2012, 35 (1-2), 265-272. 17. Ivask, A.; Francois, M.; Kahru, A.; Dubourguier, H. C.; Virta, M.; Douay, F., Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 2004, 55 (2), 147-156. 18. Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? (vol 7, pg 25, 2009). Nature Reviews Microbiology 2009, 7 (2). 19. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N., Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014, 7 (2), 60-72. 20. Browning, D. F.; Busby, S. J., Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 2016, 14 (10), 638-50. 21. Brown, N. L.; Stoyanov, J. V.; Kidd, S. P.; Hobman, J. L., The MerR family of transcriptional regulators. Fems Microbiol Rev 2003, 27 (2-3), 145-63. 22. Fang, C.; Li, L.; Zhao, Y.; Wu, X.; Philips, S. J.; You, L.; Zhong, M.; Shi, X.; O'Halloran, T. V.; Li, Q.; Zhang, Y., The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat Commun 2020, 11 (1), 6284. 23. Fang, C.; Philips, S. J.; Wu, X.; Chen, K.; Shi, J.; Shen, L.; Xu, J.; Feng, Y.; O'Halloran, T. V.; Zhang, Y., CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021, 17 (1), 57-64. 24. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microb 2001, 67 (4), 1437-1444. 25. Cayron, J.; Effantin, G.; Prudent, E.; Rodrigue, A., Original sequence divergence among Pseudomonas putida CadRs drive specificity. Res Microbiol 2020, 171 (1), 21-27. 26. Lin, Y.-J. Highly sensitive cadmium biosensors identified by phylogenetic approaches. Bachelor Thesis, National Taiwan University 2019. Chapter II. 1. Kao, Y. L. Characterization of the metal specificity of the CueR metal-binding domain by saturation mutagenesis. Master Thesis, National Taiwan University 2018. 2. Wu, C. H.; Le, D.; Mulchandani, A.; Chen, W., Optimization of a Whole-Cell Cadmium Sensor with a Toggle Gene Circuit. Biotechnol Progr 2009, 25 (3), 898-903. 3. Hynninen, A.; Tonismann, K.; Virta, M., Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 2010, 1 (2), 132-8. 4. Tang, X.; Zeng, G.; Fan, C.; Zhou, M.; Tang, L.; Zhu, J.; Wan, J.; Huang, D.; Chen, M.; Xu, P.; Zhang, C.; Lu, Y.; Xiong, W., Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci Total Environ 2018, 636, 1355- 1361. 5. Lo, W. Y., Improvement of a cell-based biosensor. Bachelor Thesis, National Taiwan University 2018. 6. Lin, Y.-J. Highly sensitive cadmium biosensors identified by phylogenetic approaches. Bachelor Thesis, National Taiwan University 2019. 7. Kuo, S. T.; Jahn, R. L.; Cheng, Y. J.; Chen, Y. L.; Lee, Y. J.; Hollfelder, F.; Wen, J. D.; Chou, H. D., Global fitness landscapes of the Shine-Dalgarno sequence. Genome Res 2020, 30 (5), 711-723. 8. Bryksin, A. V.; Matsumura, I., Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 2010, 48 (6), 463-5. 9. Chou, H. H.; Marx, C. J.; Sauer, U., Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 2015, 11 (2), e1005007. 10. Guo, K. H.; Chen, P. H.; Lin, C.; Chen, C. F.; Lee, I. R.; Yeh, Y. C., Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device. ACS Sens 2018, 3 (4), 744-748. 11. Zaslaver, A.; Bren, A.; Ronen, M.; Itzkovitz, S.; Kikoin, I.; Shavit, S.; Liebermeister, W.; Surette, M. G.; Alon, U., A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 2006, 3 (8), 623-8. 12. Gerosa, L.; Kochanowski, K.; Heinemann, M.; Sauer, U., Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 2013, 9, 658. 13. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021. 14. Tao, H. C.; Peng, Z. W.; Li, P. S.; Yu, T. A.; Su, J., Optimizing cadmium and mercury specificity of CadR-based E-coli biosensors by redesign of CadR. Biotechnol Lett 2013, 35 (8), 1253-1258. 15. Tang, X.; Zeng, G. M.; Fan, C. Z.; Zhou, M.; Tang, L.; Zhu, J. J.; Wan, J.; Huang, D. L.; Chen, M.; Xu, P.; Zhang, C.; Lu, Y.; Xiong, W. P., Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci Total Environ 2018, 636, 1355-1361. 16. Permina, E. A.; Kazakov, A. E.; Kalinina, O. V.; Gelfand, M. S., Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 2006, 6, 49. 17. Kang, Y.; Lee, W.; Kim, S.; Jang, G.; Kim, B. G.; Yoon, Y., Enhancing the copper- sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl Microbiol Biotechnol 2018, 102 (3), 1513-1521. 18. Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? (vol 7, pg 25, 2009). Nature Reviews Microbiology 2009, 7 (2). 19. Brocklehurst, K. R.; Megit, S. J.; Morby, A. P., Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Bioph Res Co 2003, 308 (2), 234-239. 20. Rensing, C.; Mitra, B.; Rosen, B. P., The zntA gene of Escherichia coli encodes a Zn(II)- translocating P-type ATPase. Proc Natl Acad Sci U S A 1997, 94 (26), 14326-31. 21. Fan, B.; Rosen, B. P., Biochemical characterization of CopA, the Escherichia coli Cu(I)- translocating P-type ATPase. J Biol Chem 2002, 277 (49), 46987-92. 22. Delmar, J. A.; Su, C. C.; Yu, E. W., Heavy metal transport by the CusCFBA efflux system. Protein Sci 2015, 24 (11), 1720-36. 23. Brocklehurst, K. R.; Hobman, J. L.; Lawley, B.; Blank, L.; Marshall, S. J.; Brown, N. L.; Morby, A. P., ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology 1999, 31 (3), 893-902. 24. Stoyanov, J. V.; Hobman, J. L.; Brown, N. L., CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular Microbiology 2001, 39 (2), 502-511. 25. Brocklehurst, K. R.; Megit, S. J.; Morby, A. P., Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem. Biophys. Res. Commun. 2003, 308 (2), 234-9. 26. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 2001, 67 (4), 1437-44. 27. Chao, Y.; Fu, D., Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. Journal of Biological Chemistry 2004, 279 (13), 12043-12050. 28. Rahman, M.; Patching, S. G.; Ismat, F.; Henderson, P. J.; Herbert, R. B.; Baldwin, S. A.; McPherson, M. J., Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol Membr Biol 2008, 25 (8), 683-90. 29. Osman, D.; Foster, A. W.; Chen, J. J.; Svedaite, K.; Steed, J. W.; Lurie-Luke, E.; Huggins, T. G.; Robinson, N. J., Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nature Communications 2017, 8. 30. Yoon, Y.; Kang, Y.; Lee, W.; Oh, K. C.; Jang, G.; Kim, B. G., Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis. J Microbiol Biotechnol 2018, 28 (2), 323-329. 31. Grass, G.; Fan, B.; Rosen, B. P.; Franke, S.; Nies, D. H.; Rensing, C., ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 2001, 183 (15), 4664-7. 32. Shetty, R. S.; Deo, S. K.; Shah, P.; Sun, Y.; Rosen, B. P.; Daunert, S., Luminescence- based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 2003, 376 (1), 11-7. 33. Joe, M. H.; Lee, K. H.; Lim, S. Y.; Im, S. H.; Song, H. P.; Lee, I. S.; Kim, D. H., Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioproc Biosyst Eng 2012, 35 (1-2), 265-272. 34. Matsuura, H.; Yamamoto, Y.; Muraoka, M.; Akaishi, K.; Hori, Y.; Uemura, K.; Tsuji, N.; Harada, K.; Hirata, K.; Bamba, T.; Miyasaka, H.; Kuroda, K.; Ueda, M., Development of surface-engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene-excimer fluorescence. Biotechnol Prog 2013, 29 (5), 1197-202. Chapter III. 1. Bereza-Malcolm, L. T.; Mann, G.; Franks, A. E., Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. Acs Synthetic Biology 2015, 4 (5), 535-546. 2. Rueden, C. T.; Schindelin, J.; Hiner, M. C.; DeZonia, B. E.; Walter, A. E.; Arena, E. T.; Eliceiri, K. W., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017, 18 (1), 529. 3. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021. 4. World Health Organization, Cadmium in drinking-water. WHO/SDE/WSH/03.04/80/Rev/1 ed.; World Health Organization: Geneva, 2011. 5. Li, H.; Yao, Y.; Han, C.; Zhan, J., Triazole-ester modified silver nanoparticles: click synthesis and Cd2+ colorimetric sensing. Chem Commun (Camb) 2009, (32), 4812-4. 6. Guo, Y. M.; Zhang, Y.; Shao, H. W.; Wang, Z.; Wang, X. F.; Jiang, X. Y., Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal Chem 2014, 86 (17), 8530-8534. 7. Zhang, L. F.; Hu, W. P.; Yu, L. P.; Wang, Y., Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd-2. Chem Commun 2015, 51 (20), 4298- 4301. 8. Lin, L.; Wang, Y.; Xiao, Y.; Liu, W., Hydrothermal synthesis of carbon dots codoped with nitrogen and phosphorus as a turn-on fluorescent probe for cadmium(II). Mikrochim Acta 2019, 186 (3), 147. 9. Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C., Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J Hazard Mater 2020, 392, 122506. 10. Zeng, L.; Gong, J.; Rong, P.; Liu, C.; Chen, J., A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta 2019, 198, 412-416. 11. Blake, D. A.; Jones, R. M.; Blake, R. C., 2nd; Pavlov, A. R.; Darwish, I. A.; Yu, H., Antibody-based sensors for heavy metal ions. Biosens Bioelectron 2001, 16 (9-12), 799-809. 12. Song, S. S. Z., S. Z.; Zhu, J. P.; Liu, L. Q.; Kuang, H., Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food Agric. Immunol. 2018, 29 (1), 3-13. Chapter IV. 1. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microb 2001, 67 (4), 1437-1444. 2. Hall, M. D.; Yasgar, A.; Peryea, T.; Braisted, J. C.; Jadhav, A.; Simeonov, A.; Coussens, N. P., Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 2016, 4 (2), 022001. 3. Rossi, A. M.; Taylor, C. W., Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 2011, 6 (3), 365-87. 4. Moerke, N. J., Fluorescence Polarization (FP) Assays for Monitoring Peptide-Protein or Nucleic Acid-Protein Binding. Curr Protoc Chem Biol 2009, 1 (1), 1-15. 5. Anderson, B. J.; Larkin, C.; Guja, K.; Schildbach, J. F., Using Fluorophore-Labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions. Method Enzymol 2008, 450, 253-272. 6. Liu, X.; Hu, Q.; Yang, J.; Huang, S.; Wei, T.; Chen, W.; He, Y.; Wang, D.; Liu, Z.; Wang, K.; Gan, J.; Chen, H., Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci U S A 2019, 116 (41), 20398-20403. 7. Mikhaylina, A.; Ksibe, A. Z.; Scanlan, D. J.; Blindauer, C. A., Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018, 46 (4), 983-1001. 8. O'Halloran, T. V.; Frantz, B.; Shin, M. K.; Ralston, D. M.; Wright, J. G., The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 1989, 56 (1), 119-29. 9. Joshi, C. P.; Panda, D.; Martell, D. J.; Andoy, N. M.; Chen, T. Y.; Gaballa, A.; Helmann, J. D.; Chen, P., Direct substitution and assisted dissociation pathways for turning off transcription by a MerR-family metalloregulator. Proc Natl Acad Sci U S A 2012, 109 (38), 15121-6. 10. Andoy, N. M.; Sarkar, S. K.; Wang, Q.; Panda, D.; Benitez, J. J.; Kalininskiy, A.; Chen, P., Single-molecule study of metalloregulator CueR-DNA interactions using engineered Holliday junctions. Biophys J 2009, 97 (3), 844-52. 11. Osman, D.; Foster, A. W.; Chen, J. J.; Svedaite, K.; Steed, J. W.; Lurie-Luke, E.; Huggins, T. G.; Robinson, N. J., Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nature Communications 2017, 8. 12. Xu, J.; Matthews, K. S., Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Biochemistry 2009, 48 (22), 4988-98. Chapter V. 1. Corbisier, P.; Ji, G.; Nuyts, G.; Mergeay, M.; Silver, S., luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. Fems Microbiol Lett 1993, 110 (2), 231-8. 2. World Health Organization, Cadmium in drinking-water. WHO/SDE/WSH/03.04/80/Rev/1 ed.; World Health Organization: Geneva, 2011. Supplementary information 1. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73549 | - |
dc.description.abstract | 生物感知器近年來常被用來替代常規檢測方法以監測公共衛生與生態系統中的 重金屬污染。然而,生物感知器對金屬靈敏度與專一性間相抵觸的權衡問題,相對 地阻礙了其發展。為解決此困境,本研究採用遺傳工程方法,發展出對鎘金屬具有 高靈敏度、專一性與反應性的生物感知器。我們在大腸桿菌細胞中植入帶有 CadR 轉 錄因子與其同源調控啟動子的基因模組,並透過剔除大腸桿菌的金屬外運蛋白來增 加細胞中鎘金屬的囤積量,從而加強了帶有 CadR 轉錄因子同源物的大腸桿菌其對鎘 金屬的靈敏度。另一方面,在改造的大腸桿菌中消去其他金屬的影響也使得最終的 生物感知器對鎘金屬具有高度專一性。此生物感知器可在 3 nM 的鎘金屬誘導下監測 到細胞螢光,並在 0-200 nM 間對鎘金屬具有線性的反應,且相對於無加金屬的狀態, 此生物感知器在鎘金屬誘導下能產生高達 777 倍的螢光信號變化。此外,我結合了此 生物感知器與智慧型手機開發出一套簡便的檢測方法,可用以偵測農業灌溉水與人 體尿液中的鎘金屬濃度。此方法具有高成本效益、易於使用與可擴展至篩選大量農 業與醫學樣品等優點。另一方面,我也進行了偏極螢光測定來探討 CadR 同源物在細 胞中對金屬反應差異的內在機理。總結而言,本研究強調了生物感知器的潛力與實 際應用價值,並對鎘生物感知器的發展作出貢獻。 | zh_TW |
dc.description.abstract | Recently, whole-cell biosensors have become a favorable alternative to conventional chemical methods for monitoring heavy metal pollution in public health and ecosystems. However, the inherent trade-off between sensitivity and specificity has hindered their development over decades. Here, I generated a sensitive, specific, and high-response whole- cell biosensor for cadmium ions through genetic engineering of Escherichia coli. Genetic modules harboring CadR homologs and the cognate promoters were introduced into E. coli for cadmium detection. Reconfiguring the metal transport system of E. coli enabled the enrichment of intracellular cadmium ions, thereby enhancing the sensitivity of E. coli bearing CadR homologs to detect cadmium ions. Also, depriving interfering metal species in the engineered E. coli allowed it to respond to cadmium ions specifically. The resulting cadmium biosensor exhibited a detection limit of 3 nM, a linear response range from 0 to 200 nM, and a maximal 777-fold signal change. In addition, a smartphone-assisted method capable of measuring cadmium ions in irrigation water and human urine was developed. This assay was cost-effective, user-friendly and scalable to screen large amounts of agricultural and medical samples. Moreover, fluorescence polarization measurement was performed to dissect the molecular basis of metal reactivity of two CadR homologs in vitro. Collectively, my thesis work contributes to the develpoment of a cadmium biosensor and underscores the potential and value of whole-cell biosensors. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:05:57Z (GMT). No. of bitstreams: 1 U0001-1303202118010500.pdf: 4417440 bytes, checksum: 0196f687bd6fe90fac3f7816e59e8bd7 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Contents v Figures vi Tables vii Chapter I. Introduction 1 Chapter II. Development of a sensitive and specific whole-cell cadmium biosensor 7 Chapter III. Developing a smartphone-based cell pellet assay for cadmium quantification 31 Chapter IV. Investigating the binding mechanism of CadR homologs and DNA 38 Chapter V. Conclusions and future perspectives 53 Supplementaty information 55 | |
dc.language.iso | en | |
dc.title | 以遺傳工程開發對鎘金屬靈敏且專一之生物感知器 | zh_TW |
dc.title | Sensitive and specific cadmium biosensor developed by genetic engineering | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-9543-9571 | |
dc.contributor.oralexamcommittee | 鄭貽生(Yi-Sheng Cheng),葉怡均(Yi-Chun Yeh) | |
dc.subject.keyword | 鎘金屬,生物感知器,CadR 蛋白,金屬恆定性,生物工程,智慧型手機偵測,偏極螢光, | zh_TW |
dc.subject.keyword | cadmium,whole-cell biosensor,CadR,metal homeostasis,cell engineering,smartphone detection,fluorescence polarization, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU202100785 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-03-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1303202118010500.pdf 目前未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。