請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73531
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊健志 | |
dc.contributor.author | Yi-An Lin | en |
dc.contributor.author | 林珆安 | zh_TW |
dc.date.accessioned | 2021-06-17T07:40:19Z | - |
dc.date.available | 2024-02-20 | |
dc.date.copyright | 2019-02-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-15 | |
dc.identifier.citation | References
Agarwal, M., Y. Hao, A. Kapoor, C. H. Dong, H. Fujii, X. Zheng and J. K. Zhu (2006). 'A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.' The Journal of Biological Chemistry 281(49): 37636-37645. Banerjee, S., F. Feyertag and D. Alvarez-Ponce (2017). 'Intrinsic protein disorder reduces small-scale gene duplicability.' DNA Research 24(4): 435-444. Chen, C. C., C. S. Liang, A. L. Kao and C. C. Yang (2010). 'HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis.' Journal of Experimental Botany 61(12): 3305-3320. Chen, L., L. Guan, P. Qian, F. Xu, Z. Wu, Y. Wu, K. He, X. Gou, J. Li and S. Hou (2016). 'NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.' Development 143(9): 1600-1611. Chinnusamy, V., M. Ohta, S. Kanrar, B. H. Lee, X. Hong, M. Agarwal and J. K. Zhu (2003). 'ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.' Genes & Development 17(8): 1043-1054. Chinnusamy, V., J. Zhu and J. K. Zhu (2007). 'Cold stress regulation of gene expression in plants.' Trends in Plant Science 12(10): 444-451. Das, A. and C. Mukhopadhyay (2009). 'Urea-Mediated Protein Denaturation: A Consensus View.' The Journal of Physical Chemistry B 113(38): 12816-12824. Denay, G., A. Creff, S. Moussu, P. Wagnon, J. Thevenin, M. F. Gerentes, P. Chambrier, B. Dubreucq and G. Ingram (2014). 'Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1.' Development 141(6): 1222-1227. Ding, Y., H. Li, X. Zhang, Q. Xie, Z. Gong and S. Yang (2015). 'OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis.' Development Cell 32(3): 278-289. Dong, C. H., M. Agarwal, Y. Zhang, Q. Xie and J. K. Zhu (2006). 'The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.' Proceedings of the National Academy of Sciences USA 103(21): 8281-8286. Dosztanyi, Z., B. Meszaros and I. Simon (2009). 'ANCHOR: web server for predicting protein binding regions in disordered proteins.' Bioinformatics 25(20): 2745-2746. Drozdetskiy, A., C. Cole, J. Procter and G. J. Barton (2015). 'JPred4: a protein secondary structure prediction server.' Nucleic Acids Research 43(W1): W389-W394. Dunker, A. K., M. M. Babu, E. Barbar, M. Blackledge, S. E. Bondos, Z. Dosztanyi, H. J. Dyson, J. Forman-Kay, M. Fuxreiter, J. Gsponer, K. H. Han, D. T. Jones, S. Longhi, S. J. Metallo, K. Nishikawa, R. Nussinov, Z. Obradovic, R. V. Pappu, B. Rost, P. Selenko, V. Subramaniam, J. L. Sussman, P. Tompa and V. N. Uversky (2013). 'What's in a name? Why these proteins are intrinsically disordered: Why these proteins are intrinsically disordered.' Intrinsically Disordered Proteins 1(1): e24157. Dunker, A. K., C. J. Brown, J. D. Lawson, L. M. Iakoucheva and Z. Obradović (2002). 'Intrinsic Disorder and Protein Function.' Biochemistry 41(21): 6573-6582. Dunker, A. K., J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, J. Ausio, M. S. Nissen, R. Reeves, C. Kang, C. R. Kissinger, R. W. Bailey, M. D. Griswold, W. Chiu, E. C. Garner and Z. Obradovic (2001). 'Intrinsically disordered protein.' Journal of Molecular Graphics and Modelling 19(1): 26-59. Dunker, A. K., Z. Obradovic, P. Romero, E. C. Garner and C. J. Brown (2000). 'Intrinsic protein disorder in complete genomes.' Genome Inform Ser Workshop Genome Inform 11: 161-171. Dunker, A. K. and V. N. Uversky (2012). 'Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life AU - Xue, Bin.' Journal of Biomolecular Structure and Dynamics 30(2): 137-149. Ferre, F. and P. Clote (2006). 'DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification.' Nucleic Acids Research 34(Web Server issue): W182-185. Fuxreiter, M., I. Simon, P. Friedrich and P. Tompa (2004). 'Preformed structural elements feature in partner recognition by intrinsically unstructured proteins.' Journal of Molecular Biology 338(5): 1015-1026. Fuxreiter, M. and P. Tompa (2012). 'Fuzzy complexes: a more stochastic view of protein function.' Advances in Experimental Medicine and Biology 725: 1-14. Greene, R. F., Jr. and C. N. Pace (1974). 'Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin.' The Journal of Biological Chemistry 249(17): 5388-5393. Gsponer, J., M. E. Futschik, S. A. Teichmann and M. M. Babu (2008). 'Tight regulation of unstructured proteins: from transcript synthesis to protein degradation.' Science 322(5906): 1365-1368. He, B., K. Wang, Y. Liu, B. Xue, V. N. Uversky and A. K. Dunker (2009). 'Predicting intrinsic disorder in proteins: an overview.' Cell Research 19(8): 929-949. Howton, T., Zhan, Y., Sun, Y., & Shahid Mukhtar, M. (2016). Intrinsically disordered proteins: controlled chaos or random walk. International Journal of Plant Biology, 6(1). Hu, Y., L. Jiang, F. Wang and D. Yu (2013). 'Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.' Plant Cell 25(8): 2907-2924. Huang, X. S., Q. Zhang, D. Zhu, X. Fu, M. Wang, Q. Zhang, T. Moriguchi and J. H. Liu (2015). 'ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.' Journal of Experimental Botany 66(11): 3259-3274. Iakoucheva, L. M., A. L. Kimzey, C. D. Masselon, J. E. Bruce, E. C. Garner, C. J. Brown, A. K. Dunker, R. D. Smith and E. J. Ackerman (2001). 'Identification of intrinsic order and disorder in the DNA repair protein XPA.' Protein Science 10(3): 560-571. Kanaoka, M. M., L. J. Pillitteri, H. Fujii, Y. Yoshida, N. L. Bogenschutz, J. Takabayashi, J. K. Zhu and K. U. Torii (2008). 'SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation.' The Plant Cell Online 20(7): 1775-1785. Ku, Y. S., M. Sintaha, M. Y. Cheung and H. M. Lam (2018). 'Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses.' International Journal of Molecular Sciences 19(10). Lee, J. H., J. H. Jung and C. M. Park (2015). 'INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.' Plant Journal 2015 Oct;84(1):29-40. Li, H., Y. Ding, Y. Shi, X. Zhang, S. Zhang, Z. Gong and S. Yang (2017). 'MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.' Development Cell 43(5): 630-642.e634. Liang, C. H. and C. C. Yang (2015). 'Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis.' Plant Molecular Biology 88(4-5): 459-470. Lieutaud, P., F. Ferron, A. V. Uversky, L. Kurgan, V. N. Uversky and S. Longhi (2016). 'How disordered is my protein and what is its disorder for? A guide through the 'dark side' of the protein universe.' Intrinsically Disordered Proteins 4(1): e1259708. Liu, Y. and J. Zhou (2018). 'MAPping Kinase Regulation of ICE1 in Freezing Tolerance.' Trends in Plant Science 23(2): 91-93. Marcus, Y. (2012). 'The guanidinium ion.' The Journal of Chemical Thermodynamics 48: 70-74. Marin, M. and T. Ott (2014). 'Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors.' Chemical Reviews 114(13): 6912-6932. Meng, F., V. Uversky and L. Kurgan (2017). 'Computational Prediction of Intrinsic Disorder in Proteins.' Current Protocols in Protein Science 88: 2.16.11-12.16.14. Meng, F., V. N. Uversky and L. Kurgan (2017). 'Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions.' Cellular and Molecular Life Sciences 74(17): 3069-3090. Meszaros, B., G. Erdos and Z. Dosztanyi (2018). 'IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.' Nucleic Acids Research 46(W1): W329-w337. Micsonai, A., F. Wien, E. Bulyaki, J. Kun, E. Moussong, Y. H. Lee, Y. Goto, M. Refregiers and J. Kardos (2018). 'BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra.' Nucleic Acids Research 46(W1): W315-w322. Miura, K., J. B. Jin, J. Lee, C. Y. Yoo, V. Stirm, T. Miura, E. N. Ashworth, R. A. Bressan, D. J. Yun and P. M. Hasegawa (2007). 'SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis.' The Plant Cell Online 19(4): 1403-1414. Mohan, A., C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese, A. K. Dunker and V. N. Uversky (2006). 'Analysis of molecular recognition features (MoRFs).' Journal of Molecular Biology 362(5): 1043-1059. Narasumani, M. and P. M. Harrison (2015). 'Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design.' Scientific Reports 5: 18586. Oganesyan, N., S. H. Kim and R. Kim (2005). 'On-column protein refolding for crystallization.' Journal of Structural and Functional Genomics 6(2-3): 177-182. Ohta, M., A. Sato, N. Renhu, T. Yamamoto, N. Oka, J. K. Zhu, Y. Tada, T. Suzaki and K. Miura (2018). 'MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis.' Scientific Reports 8(1): 11622. Oldfield, C. J., J. Meng, J. Y. Yang, M. Q. Yang, V. N. Uversky and A. K. Dunker (2008). 'Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners.' BMC Genomics 9 Suppl 1: S1. Pace, C. N., D. V. Laurents and J. A. Thomson (1990). 'pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1.' Biochemistry 29(10): 2564-2572. Pazos, F., N. Pietrosemoli, J. A. Garcia-Martin and R. Solano (2013). 'Protein intrinsic disorder in plants.' Frontiers in Plant Science 4: 363. Pejaver, V., W. L. Hsu, F. Xin, A. K. Dunker, V. N. Uversky and P. Radivojac (2014). 'The structural and functional signatures of proteins that undergo multiple events of post-translational modification.' Protein Science 23(8): 1077-1093. Peng, K., S. Vucetic, P. Radivojac, C. J. Brown, A. K. Dunker and Z. Obradovic (2005). 'Optimizing long intrinsic disorder predictors with protein evolutionary information.' Journal of Bioinformatics and Computational Biology 3(1): 35-60. Peng, Z. and L. Kurgan (2012). 'On the complementarity of the consensus-based disorder prediction.' Pacific Symposium on Biocomputing: 176-187. Roughton, B. C., L. K. Iyer, E. Bertelsen, E. M. Topp and K. V. Camarda (2013). 'Protein aggregation and lyophilization: Protein structural descriptors as predictors of aggregation propensity.' Computers & Chemical Engineering 58(2013): 369-377. Sharma, R., G. Raicar, T. Tsunoda, A. Patil and A. Sharma (2018). 'OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.' Bioinformatics 34(11): 1850-1858. Stockinger, E. J., S. J. Gilmour and M. F. Thomashow (1997). 'Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.' Proceedings of the National Academy of Sciences USA 94(3): 1035-1040. Tanford, C. (1964). 'Isothermal Unfolding of Globular Proteins in Aqueous Urea Solutions.' Journal of the American Chemical Society 86(10): 2050-2059. Tompa, P. (2002). 'Intrinsically unstructured proteins.' Trends in Biochemical Sciences 27(10): 527-533. Tsumoto, K., M. Umetsu, I. Kumagai, D. Ejima and T. Arakawa (2003). 'Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.' Biochemical and Biophysical Research Communications 312(4): 1383-1386. Uversky, V. N. (2013). 'The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins.' Intrinsically disordered proteins 1(1): e24684-e24684. Uversky, V. N. and A. K. Dunker (2013). 'The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure.' F1000 Biology Reports 5: 1. Uversky, V. N., C. J. Oldfield and A. K. Dunker (2005). 'Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling.' Journal of Molecular Recognition 18(5): 343-384. Vucetic, S., Z. Obradovic, V. Vacic, P. Radivojac, K. Peng, L. M. Iakoucheva, M. S. Cortese, J. D. Lawson, C. J. Brown, J. G. Sikes, C. D. Newton and A. K. Dunker (2005). 'DisProt: a database of protein disorder.' Bioinformatics 21(1): 137-140. Ward, J. J., J. S. Sodhi, L. J. McGuffin, B. F. Buxton and D. T. Jones (2004). 'Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life.' Journal of Molecular Biology 337(3): 635-645. Wei, D., M. Liu, H. Chen, Y. Zheng, Y. Liu, X. Wang, S. Yang, M. Zhou and J. Lin (2018). 'INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis.' PLoS Genetics 14(10): e1007695. Yamaguchi, H. and M. Miyazaki (2014). 'Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.' Biomolecules 4(1): 235-251. Yamaguchi-Shinozaki, K. and K. Shinozaki (1994). 'A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress.' Plant Cell 6(2): 251-264. Yamaguchi-Shinozaki, K. and K. Shinozaki (2006). 'TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES.' Annual Review of Plant Biology 57(1): 781-803. Yuan, J. and B. Xue (2015). 'Role of structural flexibility in the evolution of emerin.' Journal of Theoretical Biology 385: 102-111. Zhao, C., P. Wang, T. Si, C. C. Hsu, L. Wang, O. Zayed, Z. Yu, Y. Zhu, J. Dong, W. A. Tao and J. K. Zhu (2017). 'MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.' Development Cell 43(5): 618-629.e615. Zhu, Y., H. Yang, H. G. Mang and J. Hua (2011). 'Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis.' Plant Physiology 155(1): 580-588 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73531 | - |
dc.description.abstract | 在阿拉伯芥中,Inducer of CBF Expression 1 (ICE1) 是一個 bHLH 家族轉錄因子。目前已經看到 ICE1 有十個交互作用的蛋白質,並且可被其他多個蛋白在不同位點進行轉譯後修飾,並參與許多不同生理功能。本研究從蛋白之結構的角度研究為何 ICE1 會在植物中扮演如此多重角色。二級結構預測軟體顯示 ICE1 有約 60% 的序列被預測為 '固有無序蛋白' 片段,這種蛋白常有許多不同交互作用蛋白,很有可能就是 ICE1 能夠在植物體中有多重角色及功能的原因。本研究首先以得到重組蛋白為目標,建立了 ICE1 重組蛋白的表現系統,成功在包涵體中表現出 ICE1 重組蛋白,將包涵體再溶解後,以多種不同的方式進行再摺疊及純化。樣品分別以圓二色光譜和動態光散射儀對其結構與化學性質作初步的分析及探討,發現其二級結構的組成會因溶液而產生變化,並且會形成不同大小的粒子,可能聚集形成聚合物或是蛋白凝集。當提高溶液鹽濃度時,我們透過圓二色光譜觀察到 ICE1 重組蛋白較易形成 α-螺旋的二級結構,且透過動態光散射儀觀察到粒子大小降低,顯示蛋白凝集程度減緩。這些結果暗示 ICE1有可能在環境改變時也產生結構上的改變。 | zh_TW |
dc.description.abstract | Inducer of CBF Expression 1 (ICE1) is a MYC-like basic helix-loop-helix (bHLH) transcription factor in Arabidopsis thaliana. ICE1 interacts with or subjects to be post-translational modified by at least ten different proteins, and participates in different physiological functions. This study aims to understand why ICE1 can have so many functions from the structural point of view. Secondary structure analysis suggested that about 60% of the full length of ICE1 was likely to be intrinsic disordered protein region (IDPR). It is possible that the ability of ICE1 to interact with multiple proteins is due to its putative IDP nature. The production of recombinant ICE1 protein was established in this study. The recombinant protein was mainly produced as inclusion bodies. Isolated inclusion bodies were resolubilized and subjected to several refolding protocols in an attempt to obtain soluble and monomeric form for structural analysis. Soluble form of ICE1 recombinant protein was prepared using on-column refolding by affinity chromatography, and then analyzed by far-UV CD spectroscopy and dynamic light scattering. The secondary structure composition and particle size may vary in different conditions, which implied that it may form polymers or aggregation. High concentrations of NaCl might increase the α-helix forming ability as suggested by CD spectrum. Further, the smaller particle size revealed by DLS suggest a lower protein aggregation. These results implied that ICE1 has the ability to undergo structural changes in different environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:40:19Z (GMT). No. of bitstreams: 1 ntu-108-R05b22026-1.pdf: 9004573 bytes, checksum: dd86fda2522a1ffcf700a28cf1ce4ed3 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Abstract 2
摘要 3 Abbreviations 4 Contents 6 Chapter 1. Introduction 9 1.1 Arabidopsis thaliana ICE1 (Inducer of CBF expression 1) 9 1.1.1 The ICE1-CBF-COR cold signaling transcriptional cascade 9 1.1.2 Multiple physiological functions of ICE1 12 1.2 Intrinsic disordered proteins/ protein regions (IDPs/ IDPRs) 13 1.2.1 Structural and sequence features of IDPs/ IDPRs 14 1.2.2 Natural Abundance of IDPs/ IDPRs 15 1.2.3 Major Disorder-Based Biological Functions 15 1.3 Motivation and aim of the study 16 Chapter 2. Material and methods 19 2.1 Experimental materials 19 2.1.1 Bacterial strains 19 2.1.2 E. coli mediums 20 2.1.3 Vectors 21 2.2 Experimental methods 22 2.2.1 DNA extraction and analyze 22 2.2.2 Construction of expression plasmids 23 2.2.3 Protein analysis 26 2.2.4 Protein expression, purification and refolding 28 2.2.5 Structural and chemical analysis 33 Chapter 3. Results 35 3.1 Arabidopsis thaliana transcription factor ICE1 was a putative IDP 35 3.2 Construction of a heterologous expression system of ICE1 recombinant protein in E. coli 36 3.3 Purification, refolding and structural analysis of ICE1 recombinant protein 38 3.3.1 Refolding upon step-wise dialysis and sample analysis of T7-ICE1-6xHis 39 3.3.2 On-column refolding utilizing affinity chromatography and sample analysis of T7-ICE1-6xHis 40 3.3.3 Refolding of ICE1 recombinant protein upon drop dilution and sample analysis of T7-ICE1-6xHis 44 3.3.4 On-column refolding utilizing size exclusion chromatography and sample analysis of T7-ICE1-6xHis 46 Chapter 4. Discussion 48 4.1 Different refolding methods affect biophysical properties of T7-ICE1-6xHis 48 4.2 The chemical property of ICE1 49 4.3 The importance of ICE1 IDPR from evolutionary aspects 51 4.4 Future work 53 References 54 Figures 61 Figure 1. In silico studies of ICE1 structure 61 Figure 2. Expression test of ICE1 recombinant proteins and isolation of inclusion bodies 62 Figure 3. Resolubilization of inclusion bodies and refolding by step-wise dialysis 63 Figure 4. Particle size of ICE1 recombinant protein assessed by Dynamic Light Scattering 64 Figure 5. On-column refolding 65 Figure 6. Removal of imidazole after on-column refolding by PD-10 column 66 Figure 7. Removal of imidazole after on-column refolding by dialysis 67 Figure 8. Comparison between dialysis with PBS and 0.5 M NaCl after on-column refolding 68 Figure 9. Particle size measurement of ICE1 recombinant protein in chaotropes 69 Figure 10. Particle size measurement of ICE1 recombinant protein in chaotropes 70 Figure 11. Refolding upon drop dilution 71 Figure 12. Particle size of ICE1 recombinant protein before and after refolding by drop dilution 72 Figure 13. On-column refolding using size exclusion chromatography 73 Figure 14. Particle size of ICE1 recombinant protein after on-column refolding using size exclusion chromatography 74 Figure 15. Cysteine state and Disulfide Bond partner prediction 75 Figure 16. A proposed model of the effect of NaCl to ICE1 recombinant protein 76 Figure 17. Sequence alignment of ICE1 and homologs within several plant species. 77 Tables 78 Table 1. PONDR-VSL2 prediction result 81 Table 2. ANCHOR2 prediction result 82 Table 3. OPAL prediction result 86 Table 4. Expression conditions of ICE1 recombinant proteins 90 Table 5. Secondary structure determination by BestSel 91 問答集 92 | |
dc.language.iso | en | |
dc.title | 阿拉伯芥轉錄因子 ICE1 之重組蛋白表現及結構分析 | zh_TW |
dc.title | Recombinant protein expression and structural studies of
Arabidopsis thaliana transcription factor ICE1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王勝仕,陳佩燁,黃介嶸 | |
dc.subject.keyword | 固有無序蛋白,ICE1,蛋白質摺疊, | zh_TW |
dc.subject.keyword | Intrinsic disordered proteins,ICE1,Protein refolding, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201900584 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。