請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73522
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹承礎 | |
dc.contributor.author | Long Qian | en |
dc.contributor.author | 錢龍 | zh_TW |
dc.date.accessioned | 2021-06-17T07:39:47Z | - |
dc.date.available | 2029-02-15 | |
dc.date.copyright | 2019-02-20 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-02-15 | |
dc.identifier.citation | 第七章 參考文獻
1. Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the association for information science and technology, 67(9), 2047-2059. 2. Zervas, G., Proserpio, D., & Byers, J. W. (2017). The rise of the sharing economy: Estimating the impact of Airbnb on the hotel industry. Journal of Marketing Research, 54(5), 687-705. 3. Möhlmann, M. (2015). Collaborative consumption: determinants of satisfaction and the likelihood of using a sharing economy option again. Journal of Consumer Behaviour, 14(3), 193-207. 4. 郑志来. (2016). 共享经济的成因、内涵与商业模式研究. 现代经济探讨,No.411(3), 32-36. 5. Robbins, L. (2007). An essay on the nature and significance of economic science. Ludwig von Mises Institute. 6. 汤天波, & 吴晓隽. (2015). 共享经济:“互联网+. 科学发展, (12), 78-84. 7. 谭梦桐. (2018). 职场焦虑不被同龄人抛弃的自救三个锦囊. 投资与理财, (5), 26-27. 8. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. 9. Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the association for information science and technology, 67(9), 2047-2059. 10. Klafft, M. (2008). Peer to peer lending: auctioning microcredits over the internet. 11. 王文翰. (2017). 新经济” 还是 “新泡沫”, 理性看待 “共享经济. 纳税, (14), 105-106. 12. Wang, D., & Nicolau, J. L. (2017). Price determinants of sharing economy based accommodation rental: A study of listings from 33 cities on Airbnb. com. International Journal of Hospitality Management, 62, 120-131. 13. Nieto-García, M., Muñoz-Gallego, P. A., & González-Benito, Ó. (2017). Tourists’ willingness to pay for an accommodation: The effect of eWOM and internal reference price. International Journal of Hospitality Management, 62, 67-77. 14. Van der Borg, J., Camatti, N., Bertocchi, D., & Albarea, A. (2017). The Rise of the Sharing Economy in Tourism: Exploring Airbnb Attributes for the Veneto Region. 15. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37. 16. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222. 17. Bollinger, J. (2002). Bollinger on Bollinger bands. New York: McGraw-Hill. 18. House Index and GDP growth rate quarterly retrieved from: https://tradingeconomics.com/ 19. Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203-224. 20. Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing economy: The role of personal photos in Airbnb. Tourism Management, 55, 62-73. 21. Shiffler, R. E. (1988). Maximum Z score and outliers. The American Statistician, 42(1), 79-80. 22. Steven, J. P. (1990). Intermediate statistics: A modern approach. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 23. Wilcox, R. (2003). Applying contemporary statistical techniques. Amsterdam: Academic Press. 24. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley. 25. Howell, D. (2007). Statistical methods for psychology (6th ed.). Belmont, CA: ThomsonWadsworth. 26. Dixon, W. J. (1983). Introduction of statistical analysis. New York: McGraw-Hill. 27. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd ed.). New York: Wiley. 28. Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. 1st. 29. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. 30. Rousseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical association, 85(411), 633-639. 31. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73522 | - |
dc.description.abstract | 共享經濟的高速發展,對於現有的經濟體系產生了不可忽視的影響,共享經濟對於存量資源進行優化的根本屬性,使得它從誕生開始,就受到資本市場的青睞和追捧。Airbnb平台作為共享經濟的代表性產品之一,一定程度上改變了人們的出行方式,使得人們的出行有了更多的選擇。本文通過對Airbnb上14個不同國家的44個城市近三年的數據進行深度篩選分析,通過差異對比等方法,探討了不同文化背景下Airbnb的定價曲線和所在國經濟走勢之間的聯繫。隨後,對價格曲線的變化範圍區間進行分析,通過應用統計學的相關知識,結合股票分析工具布林線,肯定了共享經濟在穩定市場價格上做出的貢獻。 | zh_TW |
dc.description.abstract | The rapid development of the sharing economy has had a negligible impact on the existing economic system. The fundamental attribute of the sharing economy to optimize the stock resources has made it popular and sought after by the capital market. As one of the representative products of the sharing economy, the Airbnb platform has changed the way people travel, which has made people have more choices for make decision. Through in-depth screening and analysis of data from 44 cities in 14 different countries on Airbnb, this paper explores the relationship between Airbnb's pricing curve and the economic trend of the host country through different methods. Subsequently, the range of variation of the price curve is analyzed. By applying the relevant knowledge of statistics and combining the stock analysis tool Bollinger Band, the contribution of the sharing economy to the stable market price is affirmed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:39:47Z (GMT). No. of bitstreams: 1 ntu-107-R04921096-1.pdf: 9300565 bytes, checksum: 3c9efae5163c05d682afca22141f3aa5 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目 錄
誌 謝 i 論文摘要 ii ABSTRACT iii 表目錄 vi 圖目錄 vii 第一章 序言 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻探討 4 第一節 共享經濟的理論知識回顧 4 第二節Airbnb相關研究论文 6 第三章 研究模型和方法 8 第一節 研究模型 8 第二節 研究變量 8 第三節 研究假設 8 第四節 研究方法 9 第四章 研究過程 11 第五章 總體分析以及個案研討 21 第一節 Airbnb房屋數量隨時間增長的情況 21 1. Netherland 21 2. Spain 22 3. Germany 23 4. Switzerland 24 5. France 25 6. Austria 26 7. Australia 27 8. United States 28 第二節 各國GDP以及房價走勢和Airbnb走勢之間的關係 33 1. Netherlands 33 2. Spain 36 3. Germany 39 4. Switzerland 41 5. France 44 6. Austria 47 7. Australia 49 8. United States 52 第六章 結論與展望 65 第七章 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 共享經濟在不同文化背景下的研究:以Airbnb為實例 | zh_TW |
dc.title | The research on sharing economy in different culture background through Airbnb | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳鴻基,周子元 | |
dc.subject.keyword | 共享經濟,Airbnb,經濟學,機器學習,布林圖, | zh_TW |
dc.subject.keyword | Sharing Economy,Airbnb,Economics,Machine learning,Bollinger Bands, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201900504 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-17 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 9.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。