請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Yu-Hsuan Lee | en |
| dc.contributor.author | 李宇軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:38:55Z | - |
| dc.date.available | 2019-04-07 | |
| dc.date.copyright | 2019-03-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-03-07 | |
| dc.identifier.citation | Reference
[1] M. A. Khan, J. Van Hove, J. Kuznia, and D. Olson, 'High electron mobility GaN/Al x Ga1− x N heterostructures grown by low‐pressure metalorganic chemical vapor deposition,' Applied Physics Letters, vol. 58, no. 21, pp. 2408-2410, 1991. [2] M. Asif Khan, J. Kuznia, A. Bhattarai, and D. Olson, 'Metal semiconductor field effect transistor based on single crystal GaN,' Applied Physics Letters, vol. 62, no. 15, pp. 1786-1787, 1993. [3] S. Nakamura, M. Senoh, and T. Mukai, 'P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,' Japanese Journal of Applied Physics, vol. 32, no. 1A, p. L8, 1993. [4] P. L. Hower, S. Pendharkar, and T. Efland, 'Current status and future trends in silicon power devices,' in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 13.1. 1-13.1. 4: IEEE. [5] M. T. Hasan, 'Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors,' 2013. [6] T. Oka and T. Nozawa, 'AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,' IEEE Electron Device Letters, vol. 29, no. 7, pp. 668-670, 2008. [7] W. Chen, K.-Y. Wong, and K. J. Chen, 'Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,' in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4: IEEE. [8] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, 'High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,' IEEE Electron Device Letters, vol. 26, no. 7, pp. 435-437, 2005. [9] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, 'Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer,' in Power Semiconductor Devices & IC's (ISPSD), 2010 22nd International Symposium on, 2010, pp. 347-350: IEEE. [10] M. Ishida, M. Kuroda, T. Ueda, and T. Tanaka, 'Nonpolar AlGaN/GaN HFETs with a normally off operation,' Semiconductor Science and Technology, vol. 27, no. 2, p. 024019, 2012. [11] Y. Chang et al., 'Inversion-channel GaN MOSFET using atomic-layer-deposited Al 2 O 3 as gate dielectric,' in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA'09. International Symposium on, 2009, pp. 131-132: IEEE. [12] T. Hashizume et al., 'Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers,' Japanese journal of applied physics, vol. 43, no. 6B, p. L777, 2004. [13] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, 'The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,' Electron Devices, IEEE Transactions on, vol. 48, no. 3, pp. 560-566, 2001. [14] B. Jogai, 'Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,' Journal of Applied Physics, vol. 93, no. 3, p. 1631, 2003. [15] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, 'The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,' IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560-566, 2001. [16] B. Jogai, 'Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,' Journal of applied physics, vol. 93, no. 3, pp. 1631-1635, 2003. [17] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, 'Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs,' IEEE Electron Device Letters, vol. 34, no. 11, pp. 1379-1381, 2013. [18] G. Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, and B. Zhang, 'Dynamic characterizations of AlGaN/GaN HEMTs with field plates using a double-gate structure,' IEEE Electron Device Letters, vol. 34, no. 2, pp. 217-219, 2013. [19] H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, 'Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs,' IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2164-2173, 2014. [20] L.-Y. Su, F. Lee, and J. J. Huang, 'Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer,' IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 460-465, 2014. [21] F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, 'Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors,' IEEE Electron Device Letters, vol. 36, no. 3, pp. 232-234, 2015. [22] C.-H. Wang, S.-Y. Ho, and J. J. Huang, 'Suppression of current collapse in enhancement-mode AlGaN/GaN high electron mobility transistors,' IEEE Electron Device Letters, vol. 37, no. 1, pp. 74-76, 2016. [23] E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, 'Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement,' IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3354-3359, 2008. [24] F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P.-A. Rolland, 'Effects of AlGaN back barrier on AlN/GaN-on-silicon high-electron-mobility transistors,' Applied Physics Express, vol. 4, no. 12, p. 124101, 2011. [25] F. Benkhelifa, S. Müller, V. Polyakov, and O. Ambacher, 'Normally-Off AlGaN/GaN/AlGaN Double Heterostructure FETs With a Thick Undoped GaN Gate Layer,' IEEE Electron Device Letters, vol. 36, no. 9, pp. 905-907, 2015. [26] D. S. Lee, X. Gao, S. Guo, and T. Palacios, 'InAlN/GaN HEMTs with AlGaN back barriers,' IEEE Electron Device Letters, vol. 32, no. 5, pp. 617-619, 2011. [27] Y.-L. Hsiao et al., 'Material growth and device characterization of AlGaN/GaN single-heterostructure and AlGaN/GaN/AlGaN double-heterostructure field effect transistors on Si substrates,' Applied Physics Express, vol. 7, no. 5, p. 055501, 2014. [28] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Enhanced effect of polarization on electron transport properties in AlGaN/GaN double-heterostructure field-effect transistors,' Applied Physics Letters, vol. 76, no. 21, pp. 3118-3120, 2000. [29] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Two-dimensional electron gas transport properties in AlGaN/GaN single-and double-heterostructure field effect transistors,' Materials Science and Engineering: B, vol. 82, no. 1, pp. 232-237, 2001. [30] H. Kambayashi et al., 'High quality SiO2/Al2O3 gate stack for GaN metal–oxide–semiconductor field-effect transistor,' Japanese Journal of Applied Physics, vol. 52, no. 4S, p. 04CF09, 2013. [31] M. Hatano, Y. Taniguchi, S. Kodama, H. Tokuda, and M. Kuzuhara, 'Reduced gate leakage and high thermal stability of AlGaN/GaN MIS-HEMTs using ZrO2/Al2O3 gate dielectric stack,' Applied Physics Express, vol. 7, no. 4, p. 044101, 2014. [32] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Enhanced electron mobility in AlGaN/InGaN/AlGaN double-heterostructures by piezoelectric effect,' Japanese journal of applied physics, vol. 38, no. 7B, p. L799, 1999. [33] E. Peng et al., 'Bipolar characteristics of AlGaN/AlN/GaN/AlGaN double heterojunction structure with AlGaN as buffer layer,' Journal of Alloys and Compounds, vol. 576, pp. 48-53, 2013. [34] C. Chen et al., 'AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors,' Applied physics letters, vol. 82, no. 25, pp. 4593-4595, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73507 | - |
| dc.description.abstract | 此篇文章中,我們成功開發出高功率高導熱氮化鎵高電子遷移率功率電晶體。TSV矽穿孔結構可以有效的改善元件的散熱和減少熱效應對元件的影響。
我們比較了沒有矽穿孔和有矽穿孔元件結構的直流特性和脈衝量測中隨著時間變化的電流在不同的工作週期情況下。我們也介紹了電流崩塌效應和自發熱效應在不同的脈衝條件下。 散熱議題在高電壓以及高頻電子元件中是個重要的存在。 | zh_TW |
| dc.description.abstract | In this work, we successfully develop of a high-power high-thermal conductivity GaN High Electron Mobility Transistors (GaN HEMTs). TSV (Through Silicon Via) structure can effectively improve heat dissipation and reduce the effect of thermal effects on devices.
We compared the DC characteristics and the pulse measurement of current variation with time under different duty cycles between w/o TSV and TSV structure. We also introduce the Current collapse and self-heating effect in different pulse. Heat dissipation in high voltage and high frequency devices is a factor of major concern. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:38:55Z (GMT). No. of bitstreams: 1 ntu-108-R05941118-1.pdf: 6822154 bytes, checksum: 678fa2b45154a8fd1e35abfe08f58d5e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii List of Figure vi Chapter 1 Introduction 1 1.1 Limitation of silicon power devices 1 1.2 GaN Applications Overview 1 1.3 AlGaN/GaN HEMTs 4 1.4 Enhancement-mode AlGaN/GaN HEMTs 6 1.5 Phenomenon of Current Collapse 8 1.6 Field Plate Design of GaN HEMT 10 1.7 Thesis Outline 11 Chapter 2 MIS E-mode AlGaN/GaN HEMTs 12 2.1 Introduction 12 2.2 Development of MIS E-mode AlGaN/GaN HEMTs 13 2.2.1 Device Structure Design and Fabrication 13 2.2.2 I-V Characteristics and Discussion 15 2.3 Investigations of Current Collapse Phenomenon 19 2.3.1 Measurement Setup 19 2.3.2 Dynamic characteristics 22 2.3.3 Effect of insulator on current collapse 26 2.3.4 Mechanism of current collapse suppression 29 2.4 Summary 31 Chapter 3 High-power High-thermal Conductivity GaN HEMTs 32 3.1 Introduction 32 3.2 Development of High-power High-thermal Conductivity GaN HEMTs 33 3.2.1 Device Structure Design and Fabrication 33 3.2.2 I-V Characteristics 37 3.2.3 Thermal performance 44 3.2.4 Mechanism of Current and Thermal Behavior 74 3.3 Summary 77 Chapter 4 Conclusion 78 Reference 79 | |
| dc.language.iso | en | |
| dc.subject | 電流坍塌現象 | zh_TW |
| dc.subject | 脈衝量測 | zh_TW |
| dc.subject | 自發熱效應 | zh_TW |
| dc.subject | 氮化鎵高電子遷移率電晶體 | zh_TW |
| dc.subject | 散熱 | zh_TW |
| dc.subject | 矽穿孔 | zh_TW |
| dc.subject | heat dissipation | en |
| dc.subject | current collapse | en |
| dc.subject | TSV (Through Silicon Via) | en |
| dc.subject | GaN HEMT | en |
| dc.subject | pulse measurement | en |
| dc.subject | self-heating effect | en |
| dc.title | 高功率高導熱氮化鎵高電子遷移率功率電晶體設計 | zh_TW |
| dc.title | Development of High-power High-thermal Conductivity GaN High Electron Mobility Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳育任,吳肇欣 | |
| dc.subject.keyword | 氮化鎵高電子遷移率電晶體,電流坍塌現象,矽穿孔,散熱,脈衝量測,自發熱效應, | zh_TW |
| dc.subject.keyword | GaN HEMT,current collapse,TSV (Through Silicon Via),heat dissipation,pulse measurement,self-heating effect, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201900640 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-03-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
