請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐源泰(Yuan-Tay Shyu) | |
dc.contributor.author | Liang-Chieh Lee | en |
dc.contributor.author | 李亮潔 | zh_TW |
dc.date.accessioned | 2021-06-17T07:38:48Z | - |
dc.date.available | 2029-12-31 | |
dc.date.copyright | 2019-03-20 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-03-07 | |
dc.identifier.citation | 1. 中津沙弥香、柴田賢哉、坂本宏司. 2010. 凍結含浸法により軟化処理したレンコンの消化性. 日本食品科学工学会誌 57:434-440.
2. 日本介護食品協議會. 2018. < https://www.udf.jp/> 3. 日本農林水產省スマイルケア食. 2018. <http://www.maff.go.jp/j/shokusan/seizo/kaigo.html> 4. 日本總務省統計情報. <http://www.soumu.go.jp/menu_seisaku/toukei/index.html> 5. 立石佳彰. 2012. p. 176-185. 低温スチーム加工技術. 刊於:大越ひろほか監修. 高齢者用食品の開発と展望. シーエムシー出版. 東京. 6. 伊東繁. 2012. p.160-145. 衝撃波を利用した食品製造技術. 刊於:大越ひろほか監修. 高齢者用食品の開発と展望. シーエムシー出版. 東京. 7. 庄林愛. 2012. p. 187. 高齢者向けパンの製造技術. 刊於:大越ひろほか監修. 高齢者用食品の開発と展望. シーエムシー出版. 東京. 8. 行政院內政部統計處. 2018. < https://www.moi.gov.tw/stat/> 9. 行政院財政部關務署統計資料庫. 2018. <https://portal.sw.nat.gov.tw/APGA/GA01> 10. 行政院經濟部統計處. 2018. <https://www.moea.gov.tw/Mns/dos/home/Home.aspx> 11. 行政院衛生福利部統計處. 2018. < https://dep.mohw.gov.tw/DOS/np-1714-113.html > 12. 吳幸娟、潘文涵、葉乃華、張新儀、洪淑怡. 2011. 台灣成人與老人營養素及食物攝取來源之變遷趨勢: 由 nahsit1993-1996 到 2005-2008. 13. 坂本宏司、石原理子、柴田賢哉、井上敦彦. 2004. 凍結減圧酵素含浸による植物組織の軟化および単細胞化. 日本食品科学工学会誌 51:395-400. 14. 坂本宏司. 2012. p. 152-158. 凍結含浸法による高齢者・介護用食品製造技術. 刊於:大越ひろほか監修. 高齢者用食品の開発と展望. シーエムシー出版. 東京. 15. 杉浦文香、伊藤聖子、新井映子. 2014. グルテン構成タンパク質組成がパンの咀嚼・嚥下特性に与える影響. 日本調理科学会誌 47:305-311. 16. 村上和保、渡部佳美、石黒理恵、松原亜衣子、大石真己、寺西美香、前田倫、中津沙弥香、坂本宏司. 2012. 凍結含浸法による野菜の煮物の調理工程における食品衛生の指標細菌の消長. 日本家政学会誌 63:117-124. 17. 東口髙志. 2015. 新しい介護食品「スマイルケア食」の創案と将来展望. 本静脈経腸栄養学会雑誌. 30:1091-1094. 18. 林薇、劉貴雲、杭極敏、高美丁、黃巧燕. 2005. 每日飲食指南-成人均衡飲食建議量參考手冊. 台北市:行政院衛生福利部. 19. 食品藥物管理署. 2010. 台灣地區食品營養成分資料庫。 20. 國家攝食資料庫. 2016. 食物大類-攝食量計算結果. 苗栗縣:財團法人國家衛生研究院. 21.曾馨誼、許瑞瑱、施坤河. 2015. 國內保健食品產業現況調查分析. 中華穀類食品工業技術研究所. 22. 農產品批發市場交易行情站. 2018. < http://amis.afa.gov.tw/> 23. 総務省自治行政局住民制度課. 2016. 日本. 住民基本台帳に基づく人口、人口動態及び世帯数のポイント(平成28年1月1日現在) 24. Aaby, K., I.H. Grimsbo, M.B. Hovda, and T.M. Rode. 2018. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 260:115-123. 25. Anthon, G.E., Y. Sekine, N. Watanabe, and D.M. Barrett. 2002. Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. J. Agr. Food Chem. 50:6153-6159. 26. Aprikian, O., M.-A. Levrat-Verny, C. Besson, J. Busserolles, C. Rémésy, and C. Demigné. 2001. Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chem. 75:445-452. 27. Bayindirli, A., H. Alpas, F. Bozoğlu, and M. Hızal. 2006. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Food Control 17:52-58. 28. Caffall, K.H. and D. Mohnen. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohyd. Res. 344:1879-1900. 29. Chakraborty, S., P.S. Rao, and H.N. Mishra. 2015. Effect of combined high pressure–temperature treatments on color and nutritional quality attributes of pineapple (Ananas comosus L.) puree. Innov. Food Sci. Emerg. 28:10-21. 30. Cichero, J.A., C. Steele, J. Duivestein, P. Clavé, J. Chen, J. Kayashita, R. Dantas, C. Lecko, R. Speyer, and P. Lam. 2013. The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Current physical medicine and rehabilitation reports 1:280-291. 31. Contreras, C., M. Martin, N. Martínez-Navarrete, and A. Chiralt. 2005. Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT-Food Sci. Technol. 38:471-477. 32. Department of Economic Social Affairs United Nations. 2017. World population ageing 2017 report. 7 September 2018. <http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf> 33. Derossi, A., T. De Pilli, and C. Severini. 2010. Reduction in the ph of vegetables by vacuum impregnation: A study on pepper. J. Food Eng. 99:9-15. 34. Eberhardt, M.V., C.Y. Lee, and R.H. Liu. 2000. Nutrition: Antioxidant activity of fresh apples. Nature 405:903. 35. Escarpa, A. and M. Gonzalez. 1998. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 823:331-337. 36. Fachin, D., C. Smout, I. Verlent, B. Ly Nguyen, A.M. Van Loey, and M.E. Hendrickx. 2004. Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing. J. Agr. Food Chem. 52:2697-2703. 37. Feskanich, D., R.G. Ziegler, D.S. Michaud, E.L. Giovannucci, F.E. Speizer, W.C. Willett, and G.A. Colditz. 2000. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J. Natl. Cancer I. 92:1812-1823. 38. Fito, P., A. Andrés, A. Chiralt, and P. Pardo. 1996. Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. J. Food Eng. 27:229-240. 39. Guillemin, A., F. Guillon, P. Degraeve, C. Rondeau, M.-F. Devaux, F. Huber, E. Badel, R. Saurel, and M. Lahaye. 2008. Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action. Food Chem. 109:368-378. 40. Grunovaitė, L., M. Pukalskienė, A. Pukalskas, and P.R. Venskutonis. 2016. Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition. J. Funct. Foods 24:85-96. 41. Hernández, A. and M.P. Cano. 1998. High-pressure and temperature effects on enzyme inactivation in tomato puree. J. Agr. Food Chem. 46:266-270. 42. Hironaka, K., M. Kikuchi, H. Koaze, T. Sato, M. Kojima, K. Yamamoto, K. Yasuda, M. Mori, and S. Tsuda. 2011. Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chem. 127:1114-1118. 43. Hollman, P.C.H. and I.C.W. Arts. 2000. Flavonols, flavones and flavanols–nature, occurrence and dietary burden. J. Sci. Food Agr. 80:1081-1093. 44. International Dysphagia Diet Standardisation Initiative. 2018. <https://iddsi.org/framework/> 45. Jacobo-VeláZquez, D.A., G.S.B. MartíNez-HernáNdez, S. Del C. RodríGuez, C.-M. Cao, and L. Cisneros-Zevallos. 2011. Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J. Agr. Food Chem. 59:6583-6593. 46. Jacobo-Velázquez, D.A., M. González-Agüero, and L. Cisneros-Zevallos. 2015. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Scientific reports 5. 47. Khan, M., E. Nakkeeran, and S. Umesh-Kumar. 2013. Potential application of pectinase in developing functional foods. Annu. Rev. Food Sci. T 4:21-34. 48. Khatri, B.P., T. Bhattarai, S. Shrestha, and J. Maharjan. 2015. Alkaline thermostable pectinase enzyme from aspergillus niger strain mcas2 isolated from manaslu conservation area, gorkha, nepal. SpringerPlus 4:488. 49. Knekt, P., S. Isotupa, H. Rissanen, M. Heliövaara, R. Järvinen, S. Häkkinen, A. Aromaa, and A. Reunanen. 2000. Quercetin intake and the incidence of cerebrovascular disease. Eur. J. Clin. Nutr. 54:415. 50. Le Marchand, L.C., S.P. Murphy, J.H. Hankin, L.R. Wilkens, and L.N. Kolonel. 2000. Intake of flavonoids and lung cancer. J. Natl. Cancer I. 92:154-160. 51. Martin-Esparza, M., N. Martínez-Navarrete, A. Chiralt, and P. Fito. 2006. Dielectric behavior of apple (var. Granny smith) at different moisture contents: Effect of vacuum impregnation. J. Food Eng. 77:51-56. 52. Maxwell, E.G., N.J. Belshaw, K.W. Waldron, and V.J. Morris. 2012. Pectin–an emerging new bioactive food polysaccharide. Trends Food Sci. Tech. 24:64-73. 53. Mendoza, F., P. Verboven, Q.T. Ho, G. Kerckhofs, M. Wevers, and B. Nicolaï. 2010. Multifractal properties of pore-size distribution in apple tissue using x-ray imaging. J. Food Eng. 99:206-215. 54. Moreno, J., J. Echeverria, A. Silva, A. Escudero, G. Petzold, K. Mella, and C. Escudero. 2017. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology. Food Sci. Technol. Int. 1082013217701354. 55. Morilla-Herrera, J., F. Martín-Santos, J. Caro-Bautista, C. Saucedo-Figueredo, S. García-Mayor, and J.M. Morales-Asencio. 2016. Effectiveness of food-based fortification in older people a systematic review and meta-analysis. J. Nutr. Health Aging 20:178. 56. Nakatsu, S., K. Kohyama, Y. Watanabe, K. Shibata, K. Sakamoto, and M. Shimoda. 2012. Mechanical properties of softened foodstuffs processed by freeze–thaw infusion of macerating enzyme. Innov. Food Sci. Emerg. 16:267-276. 57. Nakatsu, S., M. Shimoda, K. Shibata, R. Kajihara, M. Ishihara, and K. Sakamoto. 2014. Effect of citrate ions on the softening of root crops prepared with freeze‐thaw impregnation of macerating enzymes. J. Food Sci. 79. 58. Nakatsu, S., K. Kohyama, Y. Watanabe, F. Hayakawa, K. Shibata, K. Sakamoto, and M. Shimoda. 2014. A trial of human electromyography to evaluate texture of softened foodstuffs prepared with freeze-thaw impregnation of macerating enzymes. Innov. Food Sci. Emerg. 21:188-194. 59. Neri, L., L. Di Biase, G. Sacchetti, C. Di Mattia, V. Santarelli, D. Mastrocola, and P. Pittia. 2016. Use of vacuum impregnation for the production of high quality fresh-like apple products. J. Food Eng. 179:98-108. 60. Rasanayagam, V., V. Balasubramaniam, E. Ting, C. Sizer, C. Bush, and C. Anderson. 2003. Compression heating of selected fatty food materials during high‐pressure processing. J. Food Sci. 68:254-259. 61. Reineke, K., A. Mathys, and D. Knorr. 2011. The impact of high pressure and temperature on bacterial spores: Inactivation mechanisms of bacillus subtilis above 500 mpa. J. Food Sci. 76:M189-M197. 62. Rocha, A. and A.M. Morais. 2001. Characterization of polyphenoloxidase (ppo) extracted from ‘Jonagored’apple. Food Control 12:85-90. 63. Schulze, B., S. Peth, E.M. Hubbermann, and K. Schwarz. 2012. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures x-ray analysis. J. Food Eng. 109:380-387. 64. Strati, I.F., E. Gogou, and V. Oreopoulou. 2015. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod. Process. 94:668-674. 65. Serment-Moreno, V., D.A. Jacobo-Velázquez, J.A. Torres, and J. Welti-Chanes. 2017. Microstructural and physiological changes in plant cell induced by pressure: Their role on the availability and pressure-temperature stability of phytochemicals. Food Eng. Rev. 1-21. 66. Sharma, H.P., H. Patel, and Sugandha. 2017. Enzymatic added extraction and clarification of fruit juices–a review. Cr. Rev. Food Sci. 57:1215-1227. 67. Taragano, V.M. and A.M. Pilosof. 1999. Application of doehlert designs for water activity, ph, and fermentation time optimization for aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzyme Microb. Tech. 25:411-419. 68. Terefe, N.S., M. Gamage, K. Vilkhu, L. Simons, R. Mawson, and C. Versteeg. 2009. The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chem. 117:20-27. 69. Toivonen, P.M. and D.A. Brummell. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Tec. 48:1-14. 70. Vatankhah, H. and H.S. Ramaswamy. 2017. Dynamics of fluid migration into porous solid matrix during high pressure treatment. Food Bioprod. Process. 103:122-130. 71. Whitaker, J. R. 1972. Effect of temperature on enzyme-catalysed reactions. Enzymol. Food Sci. pp. 319–349. 72. Wu, J., T. Gamage, K. Vilkhu, L. Simons, and R. Mawson. 2008. Effect of thermosonication on quality improvement of tomato juice.Innov. food Sci.Emerg. 9:186-195. 73. Xie, J. and Y. Zhao. 2003. Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation. Int. J. Food Sci. Nutr. 54:387-398. 74. Yadav, S., P.K. Yadav, D. Yadav, and K.D.S. Yadav. 2009. Pectin lyase: A review. Process Biochem. 44:1-10. 75. Yusof, N.L., L. Wadsö, A.G. Rasmusson, and F.G. Galindo. 2017. Influence of vacuum impregnation with different substances on the metabolic heat production and sugar metabolism of spinach leaves. Food Bioprocess Tech. 10:1907-1917. 76. Yuan, B., M.-G.C. Danao, J.E. Stratton, S.A. Weier, C.L. Weller, and M. Lu. 2018. High pressure processing (hpp) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innov. food Sci.Emerg. 47:249-255. 77. Zhang, H. and G.S. Mittal. 2008. Effects of high-pressure processing (HPP) on bacterial spores: An overview. Food Rev. Int. 24:330-351. 78. Zhang, L., J. Yao, Y. Zhang, X. Liao, F. Chen, and X. Hu. 2015. Microstructural and morphological behaviors of asparagus lettuce cells subject to high pressure processing. Food Res. Int. 71:174-183. 79. Zhao, Y. and J. Xie. 2004. Practical applications of vacuum impregnation in fruit and vegetable processing. Trends Food Sci. Tech. 15:434-451. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73505 | - |
dc.description.abstract | 近年來,臺灣高齡人口快速增長,在 2018 年 3 月高齡人口比例超過 14%,正式進入高齡社會,高齡消費者市場也快速擴大,在飲食方面,因年歲增長造成的咀嚼吞嚥障礙常使高齡者有進食上的困難,可能導致其營養不均及飲食限制造成心理的負擔,因此開發適口性佳且色香味俱全之食品為高齡食品開發目標,而本研究選擇廣受歡迎之硬脆蘋果作為材料,進行新高齡食品製程之開發,欲以全程非熱加工方式軟化堅硬蔬果以達到日本介護食品協議會通用食品 UDF 範圍,並同時保留其外觀及營養成分。本研究分為二部分,第一部分 (製程A) 首先以減壓方式促進複合果膠酶液進入蘋果切片並進行軟化反應,再對其施以高壓處理降低酵素活性及殺菌,製程A最終調整之條件為加入切片量 1/3 之 0.05% 複合果膠酶液體,再以真空包裝機減壓處理 40 秒後封口,於 4˚C 下反應 1 小時,接著施以 600 MPa 10 分鐘之高壓處理,產品可成功達 UDF「容易咀嚼」等級,此製程產品適合於 -20˚C 冷凍保存以抑制軟化反應,在品質測定方面,以600 MPa持壓10分鐘進行高壓處理後L*值顯著高於對照組、a*值顯著低對照組,表示其能夠降低切片褐變現象,還原糖、維生素C、總酚、總類黃酮含量分別為對照組之91.71%、134.44%、132.64% 及119.36%,DPPH抗氧化能力為對照組之169.35%,顯示其除了能避免成分流失,亦具有增加成分釋放之效果,衛生檢驗方面則能有效抑制微生物生長且大腸桿菌群篩檢為陰性。由於製程 A 使用之酵素為複方,有較難控制之缺點,因此第二部份針對其缺點加以調整 (製程B),嘗試以單一果膠酶進行製程開發,首先分別測定聚半乳糖醛酸酶與果膠裂解酶於不同溫度下活性,以及熱與高壓處理對其活性影響,再依其特性搭配第一部份結果進行製程改良。從酵素測定結果可知 200 MPa可提升果膠裂解酶之活性,而製程B最終調整條件為加入切片量 1/3 之 0.01% 果膠裂解酶液體,再以真空包裝機減壓處理 40 秒後封口,接著施以200 MPa 10 分鐘高壓處理促進酵素反應,並於 50˚C 下反應 30 分鐘,最後以 600 MPa 3 分鐘之高壓處理進行殺菌,此產品可成功達 UDF「容易咀嚼」等級,在4˚C 冷藏保存過程中能夠抑制軟化反應避免硬度繼續下降,且衛生檢驗方面7天內能有效抑制微生物生長,大腸桿菌群篩檢亦皆為陰性。本研究開發之新製程為全程非熱,不但能保留其外觀及營養,生產需時短且能提供即食,具有發展新高齡食品之潛力。 | zh_TW |
dc.description.abstract | In recent years, Taiwan's elderly population has grown rapidly. In March 2018, the proportion of the elderly population exceeded 14%. It officially entered the aged society, and the market for senior consumers has also expanded rapidly. In terms of diet, chewing and swallowing disorders caused by age often appear on elderly. The difficulty in eating may lead to psychological burdens caused by uneven nutrition and dietary restrictions. Therefore, the development of foods with mouth comfort, color and flavor is the goal of advanced food development, and this study chooses the popular hard and crisp apples to be the material. The object of the study is to develop the new elderly food process and to soften the hard fruits and vegetables by the new process without thermal treatment, and the product will achieve UDF. At the same time, it will maintain its appearance and nutrients. This study is divided into two parts. The first part (Process A) firstly promotes commercial complex pectinase solution into apple slices by decompression and softens the material, and then applies high pressure processing to reduce enzyme activity and sterilization. Process A is finally adjusted. The condition is to add 0.05% of commercial complex pectinase solution in the amount of 1/3 slices , and then pack with vacuum-packing machine after depressure for 40 seconds, react at 4 ̊C for 1 hour, then applying 600 MPa for 10 minutes. The product can successfully reach the UDF 'easy chewing' grade. This process is suitable for -20 ̊C freezing to inhibit the softening reaction. In terms of quality measurement, the L* value is significantly higher after high pressure processing at 600 MPa for 10 minutes. In the control group, the a* value was significantly lower in the control group, indicating that it could reduce the browning of the apple slices. The contents of reducing sugar, vitamin C, total phenol and total flavonoids were 91.71%, 134.44%, 132.64% and 119.36% of the control group, respectively. The DPPH antioxidant capacity was 169.35% of the control group, which showed that it not only avoided the loss of components, but also increased the release of the components. The hygienic test can effectively inhibit the growth of microorganisms and the Coliform. The test of Coliform was negative. Since the enzyme used in Process A is a complicated, it has the disadvantage of being difficult to control. Therefore, the second part adjusts the shortages of process A (Process B), and attempts to develop the process with a single pectinase. First, the polygalacturonase and pectin lyase are separately determined, including the activity at different temperatures, as well as the effect of heat and high pressure treatment on their activity, then develop the method based on the first part of the results and the characteristics of single enzymes. According to the results of enzyme assay, it can be known that 200 MPa can enhance the activity of pectin lyase. The final condition of Process B is to add 0.01% of the pectin lyase solution in the amount of 1/3 of the slices, and then pack with vacuum-packing machine after depressure for 40 seconds, then seal it, and then apply 200 MPa for 10 minutes to promote the enzyme reaction. It is reacted at 50 ̊C for 30 minutes, and finally sterilized by high pressure processing at 600 MPa for 3 minutes. This product can successfully reach the UDF “easy chewable” grade, and can inhibit the softening reaction during 4 ̊C storage to avoid the hardness decreasing. And the hygienic test can effectively inhibit the growth of microorganisms within 7 days, and the test for Coliform is also negative. The new process developed in this study is non-thermal through the process, not only retains its appearance and nutrition, but also takes short production time and provides ready-to-eat food. It has the potential to develop new elderly foods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:38:48Z (GMT). No. of bitstreams: 1 ntu-107-R05628205-1.pdf: 3092868 bytes, checksum: b1c5800777f1357a4c67352723d8a0b7 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝................I
中文摘要................II Abstract................IV 目錄................VI 圖目錄................X 表目錄................XII 第一章 前言................1 第二章 研究動機與架構................2 第三章 文獻回顧................4 3.1 世界人口高齡化現況................4 3.2 臺灣人口及市場現況................6 3.2.1 高齡人口變遷及健保利用狀況................6 3.2.2 高齡人口營養需求................7 3.2.3 保健食品市場狀況................8 3.3 國外高齡食品相關機構及分級標準 ................10 3.3.1 國際吞嚥障礙飲食標準化委員會 ................11 3.3.2 日本高齡食品相關機構及分級標準................13 3.3.2.1 日本介護食品協議會通用設計食品................14 3.3.2.2 日本農林水產省smile care食................14 3.4 日本食品軟化技術及相關研究................19 3.4.1 凍結含浸技術................19 3.4.2 其他軟化技術................21 3.5 新製程開發技術相關研究................22 3.5.1 植物基材選用-以蘋果為例................22 3.5.2 軟化酵素選用................24 3.5.3 減壓處理................27 3.5.4 高壓加工技術................28 3.5.4.1 高壓加工內部環境變化................28 3.5.4.2 高壓加工對酵素活性之影響................29 3.5.4.3 高壓加工對植物基材之影響................29 3.5.4.4 高壓含浸................30 3.6 高齡食品物性測定方法................31 第四章 材料與方法................34 4.1 試驗材料與設備................34 4.1.1 試驗材料................34 4.1.2 儀器設備................34 4.2 試驗處理................36 4.2.1 試驗材料製備................36 4.2.2 製程開發及調整................36 4.3 分析試驗................37 4.3.1 總生菌數測定................37 4.3.2 大腸桿菌群篩檢................37 4.3.3 pH值測定................38 4.3.4 還原糖含量測定................38 4.3.5 可溶性蛋白質含量測定................39 4.3.6 色澤變化測定................39 4.3.7 總酚含量測定................40 4.3.8 DPPH自由基清除能力測定................40 4.3.9 酵素活性測定................41 4.3.9.1 聚半乳糖醛酸酶活性................41 4.3.9.2 果膠裂解酶活性................42 4.3.9.3 多酚氧化酶活性................43 4.3.10 硬度分析................44 4.4 統計分析................44 第五章 結果與討論................45 5.1 以複合果膠酶進行蘋果切片軟化之製程調整................45 5.1.1 複合果膠酶浸泡處理對蘋果切片硬度之影響................45 5.1.1.1 複合果膠酶中聚半乳糖醛酸酶及果膠裂解酶活性最適溫度之測定................45 5.1.1.2 減壓處理時間對液體進入蘋果切片程度之影響................47 5.1.1.3 複合果膠酶浸泡液濃度對蘋果切片硬度之影響................49 5.1.1.4 複合果膠酶浸泡液使用量對蘋果切片硬度之影響................51 5.1.1.5 複合果膠酶浸泡之蘋果切片反應時間對硬度變化之影響................53 5.1.2 高壓加工處理對酵素活性及蘋果切片品質之影響................55 5.1.2.1 高壓加工處理對複合果膠酶活性之影響................55 5.1.2.2 高壓加工處理對液體進入蘋果切片程度之影響................58 5.1.2.3 高壓加工處理對複合果膠酶浸泡蘋果切片硬度之影響................61 5.1.2.4 高壓加工處理對蘋果多酚氧化酶活性及果膠酶浸泡蘋果切片色澤影響................64 5.1.2.5 高壓加工處理對複合果膠酶浸泡對蘋果切片成分品質之影響................68 5.1.3 複合果膠酶浸泡及高壓加工處理之蘋果切片之儲藏試驗................70 5.1.3.1 於 -20˚C下儲藏 1 個月之硬度變化................70 5.1.3.2 總生菌數及大腸桿菌群篩檢................72 5.2 以單一果膠酶進行蘋果切片軟化之製程調整................74 5.2.1 單一果膠酶之反應條件................75 5.2.1.1 聚半乳糖醛酸酶反應條件................75 5.2.1.2 果膠裂解酶反應條件................77 5.2.2 單一果膠酶之失活條件測定................80 5.2.2.1 聚半乳糖醛酸酶與果膠裂解酶之熱失活條件測定................80 5.2.2.2 聚半乳糖醛酸酶與果膠裂解酶之高壓失活條件測定................83 5.2.3 單一果膠酶浸泡處理對蘋果切片硬度之影響................86 5.2.4 高壓加工處理對單一果膠酶浸泡蘋果切片硬度之影響................89 5.2.5 單一果膠酶浸泡及高壓加工處理之蘋果切片儲藏對蘋果切片品質之影響................91 5.2.5.1 於 4˚C下儲藏 7 天之硬度變化................91 5.2.5.2 總生菌數及大腸桿菌群篩檢................93 第六章 結論................96 第七章 參考文獻................97 | |
dc.language.iso | zh-TW | |
dc.title | 高壓加工及酵素滲透處理於蘋果軟化之探討 | zh_TW |
dc.title | Study of High Pressure Processing and Enzyme Impregnation on Apple Softening | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳思節(Sz-Jie Wu) | |
dc.contributor.oralexamcommittee | 劉育姍(Yu-Shan Liu) | |
dc.subject.keyword | 高壓加工,酵素滲透,高齡食品,軟化,非熱加工,蘋果, | zh_TW |
dc.subject.keyword | high pressure processing,enzyme impregnation,foods for elders,softening,non-thermal processing,apple, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU201900639 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-03-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。