請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | |
| dc.contributor.author | Ming-Xian Yang | en |
| dc.contributor.author | 楊明憲 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:41:48Z | - |
| dc.date.available | 2024-07-10 | |
| dc.date.available | 2021-05-19T17:41:48Z | - |
| dc.date.copyright | 2019-07-10 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-06-26 | |
| dc.identifier.citation | 1 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424, doi:10.3322/caac.21492 (2018).
2 Howlader, N. et al. SEER Cancer Statistics Review, retrieved from https://seer.cancer.gov/csr/1975_2014/ (2017). 3 Gibson, R. J. & Keefe, D. M. Cancer chemotherapy-induced diarrhoea and constipation: mechanisms of damage and prevention strategies. Support. Care Cancer 14, 890-900, doi:10.1007/s00520-006-0040-y (2006). 4 Chadha, V. & Shenoi, S. D. Hair loss in cancer chemotherapeutic patients. Indian J. Dermatol. Venereol. Leprol. 69, 131-132 (2003). 5 Can, G., Demir, M., Erol, O. & Aydiner, A. A comparison of men and women's experiences of chemotherapy-induced alopecia. Eur. J. Oncol. Nurs. 17, 255-260, doi:10.1016/j.ejon.2012.06.003 (2013). 6 Brydoy, M., Fossa, S. D., Dahl, O. & Bjoro, T. Gonadal dysfunction and fertility problems in cancer survivors. Acta Oncol. 46, 480-489, doi:10.1080/02841860601166958 (2007). 7 Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345-1350, doi:10.1126/science.1177319 (2010). 8 Chern, J. et al. Affinity-Driven Covalent Modulator of the Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Cascade. Angew. Chem. Int. Ed. Engl. 57, 7040-7045, doi:10.1002/anie.201801618 (2018). 9 Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554-566, doi:10.1038/nrg2364 (2008). 10 He, Z. et al. Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 5, e9603, doi:10.1371/journal.pone.0009603 (2010). 11 Mei, J. P., Kwoh, C. K., Yang, P., Li, X. L. & Zheng, J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238-245, doi:10.1093/bioinformatics/bts670 (2013). 12 Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525, doi:10.1038/nrm2728 (2009). 13 Mendoza, P. et al. Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J. Cell Sci. 126, 3835-3847, doi:10.1242/jcs.119727 (2013). 14 Wehrle-Haller, B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 24, 116-124, doi:10.1016/j.ceb.2011.11.001 (2012). 15 Lin, Y. F., Tsai, W. P., Liu, H. G. & Liang, P. H. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res. 69, 6879-6888, doi:10.1158/0008-5472.CAN-08-4700 (2009). 16 Lin, Y. F., Lee, Y. F. & Liang, P. H. Targeting beta-tubulin:CCT-beta complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca2+ entry, mitochondrial perturbation and caspase overactivation. Cell Death Dis. 3, e434, doi:10.1038/cddis.2012.173 (2012). 17 Liu, Y. J., Kumar, V., Lin, Y. F. & Liang, P. H. Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis. 8, e3052, doi:10.1038/cddis.2017.425 (2017). 18 Liang, P. H., Wang, H. M. & Shih, Y. P. Expression vectors for producing tag-cleavable fusion proteins in multiple expression systems. (2009). 19 Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362-374, doi:10.1038/nrc1075 (2003). 20 Chen, P. I. et al. Rab5 isoforms orchestrate a 'division of labor' in the endocytic network; Rab5C modulates Rac-mediated cell motility. PLoS One 9, e90384, doi:10.1371/journal.pone.0090384 (2014). 21 Onodera, Y. et al. Rab5c promotes AMAP1-PRKD2 complex formation to enhance beta1 integrin recycling in EGF-induced cancer invasion. J. Cell Biol. 197, 983-996, doi:10.1083/jcb.201201065 (2012). 22 Torres, V. A. et al. Rab5 mediates caspase-8-promoted cell motility and metastasis. Mol. Biol. Cell 21, 369-376, doi:10.1091/mbc.E09-09-0769 (2010). 23 Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 173, 767-780, doi:10.1083/jcb.200509019 (2006). 24 Steeg, P. S. Perspective: The right trials. Nature 485, S58-59, doi:10.1038/485S58a (2012). 25 Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37-44, doi:10.1038/nature01451 (2003). 26 Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell. Dev. Biol. 27, 291-320, doi:10.1146/annurev-cellbio-092910-154017 (2011). 27 Caswell, P. T. & Norman, J. C. Integrin trafficking and the control of cell migration. Traffic 7, 14-21, doi:10.1111/j.1600-0854.2005.00362.x (2006). 28 Qualmann, B. & Kessels, M. M. Endocytosis and the cytoskeleton. Int. Rev. Cytol. 220, 93-144 (2002). 29 Bucci, C. et al. The Small Gtpase Rab5 Functions as a Regulatory Factor in the Early Endocytic Pathway. Cell 70, 715-728, doi:10.1016/0092-8674(92)90306-W (1992). 30 Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494-498, doi:10.1038/28879 (1998). 31 Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A. & Zerial, M. Rab5 regulates motility of early endosomes on microtubules. Nat. Cell Biol. 1, 376-382, doi:10.1038/14075 (1999). 32 Diaz, J. et al. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion. J. Cell Sci. 127, 2401-2406, doi:10.1242/jcs.141689 (2014). 33 Liu, S. S., Chen, X. M., Zheng, H. X., Shi, S. L. & Li, Y. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway. J. Biomed. Sci. 18, 58, doi:10.1186/1423-0127-18-58 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7342 | - |
| dc.description.abstract | 癌症轉移在腫瘤發展的過程中是個難以治療與預測的現象,現有療法仍無法有效防止癌症轉移。目前對於抑制癌症轉移的標靶性療法仍有所不足。我們研究團隊先前發現一個擁有iodoacetamide基團的共價抑制劑I-Trp能夠對β-tubulin 354號位置的半胱胺酸進行烷基化,因此破壞β-tubulin和CCT-β間的交互作用,更進一步誘導CCT-β過度表現的癌細胞進行細胞凋亡,其中包含一株三陰性乳癌細胞株MDA-MB-231,而此株乳癌細胞株於本研究中用於測試I-Trp對其轉移能力之影響。本研究發現,低於半抑制濃度的I-Trp便能抑制MDA-MB-231細胞遷移和侵襲能力約7至8成。為了找出I-Trp於癌細胞中影響轉移能力的分子標的,本研究中利用帶有螢光基團的I-Trp探針,標記細胞中I-Trp的標靶蛋白質,再表現與癌細胞轉移有關的蛋白質進行烷基化位點研究。實驗發現被標記的其中一個蛋白為Rab5c,而Rab5c於先前報導顯示有調控癌細胞移動的能力。接著,將Rab5c的半胱胺酸位點進行突變,並表現於MDA-MB-231乳癌細胞中,測試I-Trp對其抑制遷徙和侵襲能力。實驗發現,Rab5c 20號以及64號位置的半胱胺酸會被I-Trp所烷基化,此外,若將這兩個位置的半胱胺酸突變為絲胺酸時,I-Trp便會失去抑制MDA-MB-231細胞遷徙和侵襲能力的藥效。總結而論,Rab5c以及先前研究發現的β-tubulin是I-Trp於細胞中的分子標的,而前者遭I-Trp所標的會影響癌症轉移能力,後者遭I-Trp標的則會誘導癌細胞凋亡。 | zh_TW |
| dc.description.abstract | Metastasis is a formidable process during tumor progression, often leading existing therapies to failure. As a result, there has been an unmet need for targeted therapies to effectively inhibit cancer metastasis. An iodoacetamide-based covalent inhibitor, I-Trp, was previously demonstrated to be capable of alkylating Cys354 of β-tubulin to disrupt the protein-protein interaction between β-tubulin and CCT-β, thus inducing apoptosis of CCT-β overexpressed cancer cells, including MDA-MB-231, a TNBC, which was used to test I-Trp on inhibiting its metastasis. In this study, a sub-IC50 concentration of I-Trp was found to decrease the migration and invasion of MDA-MB-231 by 70-80%. To identify the potential target for I-Trp inhibiting cell migration and invasion, total cellular proteins were treated with an I-Trp-derived fluorescent probe. The proteins labeled by I-Trp were further expressed in MDA-MB-231 to study their alkylating sites of I-Trp. One of the proteins, Rab5c, which has been reported to involve in metastasis, was mutated at the alkylating sites and transfected into MDA-MB-231 to test its role in I-Trp inhibiting cell migration and invasion. Cys20 and Cys64 of Rab5c were found to be alkylated by I-Trp and the alkylation resulted in suppression of MDA-MB-231 migration and invasion. In conclusion, this study combined with our previous findings show that I-Trp targets β-tubulin and Rab5c, thereby inducing cancer cell apoptosis and inhibiting cancer cell migration and invasion. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:48Z (GMT). No. of bitstreams: 1 ntu-108-R06b46015-1.pdf: 2174032 bytes, checksum: aaa355fa0200b606ed2e029dfabffb03 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 1. Introduction 3 1.1 Cancer metastasis: reasons and facts 3 1.2 Chemotherapy and targeted therapies: pros and cons 3 1.3 Target identification 4 1.4 Rab5c: a player in focal adhesion disassembly and the link with tumor cell migration and invasion 5 1.5 Previous and the present studies 6 2. Materials and methods 8 2.1 Cell culture 8 2.2 Chemicals and antibodies 8 2.3 Immunoblotting 9 2.4 Wound healing assay 9 2.5 Transwell invasion assay 10 2.6 Mass spectrometric analysis 10 2.7 Cloning of rab5c, tubb and their derivatives 11 2.8 Expression and purification of Rab5c 11 2.9 Rab5c-GTP pulldown assay 12 2.10 Integrin internalization assay 13 2.11 Capture ELISA assay 13 2.12 Production of cDNA-expressing viruses 14 2.13 Statistical analysis 15 3. Results 16 3.1 I-Trp inhibited MDA-MB-231 migration and invasion 16 3.2 Identification of the potential target of I-Trp for inhibiting MDA-MB-231 migration and invasion 16 3.3 I-Trp suppressed Rab5c activity and Rab5c-mediated integrin β1 internalization 18 3.4 Determination of alkylating sites of I-Trp in Rab5c 19 3.5 Validation of alkylating sites of I-Trp in Rab5c in MDA-MB-231 19 4. Discussion 21 Tables 24 Figures 29 Reference 41 | |
| dc.language.iso | en | |
| dc.subject | 小分子抑制劑 | zh_TW |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | 癌症轉移 | zh_TW |
| dc.subject | Rab5c | zh_TW |
| dc.subject | 分子標的鑑定 | zh_TW |
| dc.subject | 細胞侵襲 | zh_TW |
| dc.title | 鑑定抑制MDA-MB-231遷移與侵襲能力之分子標的 | zh_TW |
| dc.title | Identification of cellular targets for inhibiting MDA-MB-231 migration and invasion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳世雄,林源峰 | |
| dc.subject.keyword | 癌症轉移,小分子抑制劑,分子標的鑑定,Rab5c,細胞遷移,細胞侵襲, | zh_TW |
| dc.subject.keyword | cancer metastasis,small molecule inhibitor,target identification,Rab5c,cell migration,cell invasion, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201901077 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-06-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-10 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 2.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
