請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73429
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃定洧(Ding-Wei Huang) | |
dc.contributor.author | Kuo-Fang Chung | en |
dc.contributor.author | 鍾國方 | zh_TW |
dc.date.accessioned | 2021-06-17T07:34:23Z | - |
dc.date.available | 2029-04-26 | |
dc.date.copyright | 2019-06-24 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-05-16 | |
dc.identifier.citation | 參考文獻
1. Data Age 2025: The Evolution of Data to Life-Critical. Don’t Focus on Big Data; Focus on the Data That’s Big. Retrieved on April 05, 2019, from https://www.import.io/wp-content/uploads/2017/04/Seagate-WP-DataAge2025-March-2017.pdf 2. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper. (November 19, 2018). Retrieved on April 07, 2019, from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html 3. Soref, R., “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics. 12(6): pp.1678-1687 (2006). 4. Miller, D.A.B., “Device Requirements for Optical Interconnects to Silicon Chips,” Proceedings of the IEEE. 97(7): pp.1166-1185 (2009). 5. Heck, M.J.R., et al., “Hybrid Silicon Photonics for Optical Interconnects,” IEEE Journal of Selected Topics in Quantum Electronics. 17(2): pp.333-346 (2011). 6. Reed, G.T., et al., “Silicon optical modulators,” Nature Photonics. 4: p.518 (2010). 7. Reed, G.T., et al. “Silicon photonics: optical modulators,” in SPIE OPTO (SPIE, 2010). 8. Liu, A., et al., “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semiconductor Science and Technology. 23(6) (2008). 9. Gardes, F.Y., et al., “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Optics Express. 19(12): pp.11804-11814 (2011). 10. Thomson, D.J., et al., “50-Gb/s Silicon Optical Modulator,” IEEE Photonics Technology Letters. 24(4): pp.234-236 (2012). 11. Dong, P., Chen, L., and Chen, Y.-k., “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Optics Express. 20(6): pp.6163-6169 (2012). 12. Xiao, X., et al., “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Optics Express. 21(4): pp.4116-4125 (2013). 13. Tu, X., et al., “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Optics Express. 21(10): pp.12776-12782 (2013). 14. Gardes, F.Y., et al., “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Optics Express. 13(22): pp.8845-8854 (2005). 15. Soref, R. and Larenzo, J., “All-silicon active and passive guided-wave components for ,” IEEE Journal of Quantum Electronics. 22(6): pp.873-879 (1986). 16. Miller, D.A.B., “Optical interconnects to silicon,” IEEE Journal of Selected Topics in Quantum Electronics. 6(6): pp.1312-1317 (2000). 17. Meindl, J.D., “Interconnect opportunities for gigascale integration,” IEEE Micro. 23(3): pp.28-35 (2003). 18. Graham T. Reed, A.P.K., Silicon Photonics: An Introduction (John Wiley & Sons, Ltd, 2004). 19. Soref, R.A. and Bennett, B.R. “Kramers-Kronig Analysis Of Electro-Optical Switching In Silicon,” in Cambridge Symposium-Fiber/LASE '86 (SPIE, 1987). 20. Soref, R. and Bennett, B., “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics. 23(1): pp.123-129 (1987). 21. Tang, C.K., et al., “Low-loss, single-model optical phase modulator in SIMOX material,” Journal of Lightwave Technology. 12(8): pp.1394-1400 (1994). 22. Tang, C.K. and Reed, G.T., “Highly efficient optical phase modulator in SOI waveguides,” Electronics Letters. 31(6): pp.451-452 (1995). 23. Hewitt, P.D. and Reed, G.T., “Improving the response of optical phase modulators in SOI by computer simulation,” Journal of Lightwave Technology. 18(3): pp.443-450 (2000). 24. Xu, Q., et al., “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Optics Express. 15(2): pp.430-436 (2007). 25. Xiao, X., et al., “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Optics Express. 20(3): pp.2507-2515 (2012). 26. Ziebell, M., et al., “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Optics Express. 20(10): pp.10591-10596 (2012). 27. Liao, L., et al., “40 Gbit/s silicon optical modulator for highspeed applications,” Electronics Letters. 43(22): p.1 (2007). 28. Jayatilleka, H., Sacher, W.D., and Poon, J.K.S., “Analytical Model and Fringing-Field Parasitics of Carrier-Depletion Silicon-on-Insulator Optical Modulation Diodes,” IEEE Photonics Journal. 5(1): p.2200211 (2013). 29. Xu, H., et al., “Demonstration and Characterization of High-Speed Silicon Depletion-Mode Mach-Zehnder Modulators,” IEEE Journal of Selected Topics in Quantum Electronics. 20(4) (2014). 30. Yu, H. and Bogaerts, W., “An Equivalent Circuit Model of the Traveling Wave Electrode for Carrier-Depletion-Based Silicon Optical Modulators,” Journal of Lightwave Technology. 30(11): pp.1602-1609 (2012). 31. Marris-Morini, D., et al., “Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers,” Optics Express. 21(19): pp.22471-22475 (2013). 32. Azadeh, S.S., et al., “Low Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Optics Express. 23(18): pp.23526-23550 (2015). 33. Soref, R., Guo, J., and Sun, G., “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Optics Express. 19(19): pp.18122-18134 (2011). 34. Zhou, Y., et al., “Modeling and optimization of a single-drive push-pull silicon Mach-Zehnder modulator,” Photonics Research. 4(4): pp.153-161 (2016). 35. Goykhman, I., et al., “Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator,” Optics Express. 21(17): pp.19518-19529 (2013). 36. Yu, H., et al., “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Optics Express. 20(12): pp.12926-12938 (2012). 37. Li, Z.-Y., et al., “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Optics Express. 17(18): pp.15947-15958 (2009). 38. Ziebell, M., et al., “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Optics Express. 19(15): pp.14690-14695 (2011). 39. Anderson, S.P. and Fauchet, P.M., “Ultra-low power modulators using MOS depletion in a high-Q SiO2-clad silicon 2-D photonic crystal resonator,” Optics Express. 18(18): pp.19129-19140 (2010). 40. Rosenberg, J.C., et al., “A 25 Gbps silicon microring modulator based on an interleaved junction,” Optics Express. 20(24): pp.26411-26423 (2012). 41. Dubé-Demers, R., et al., “Analytical Modeling of Silicon Microring and Microdisk Modulators With Electrical and Optical Dynamics,” Journal of Lightwave Technology. 33(20): pp.4240-4252 (2015). 42. Wang, J., et al., “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photonics Research. 3(3): pp.58-62 (2015). 43. Farias, G.B.d., et al. “Demonstration of > 48GHz Single-Drive Push-Pull Silicon Mach-Zehnder Modulator with Low ,” in 2018 IEEE 15th International Conference on Group IV Photonics (GFP) (2018). 44. Motta, D.A., et al. “Design of a 40 GHz bandwidth slow-wave silicon modulator,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017). 45. Patel, D., et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Optics Express. 23(11): pp.14263-14287 (2015). 46. Baehr-Jones, T., et al., “Ultralow drive voltage silicon traveling-wave modulator,” Optics Express. 20(11): pp.12014-12020 (2012). 47. Xu, H., et al., “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Optics Express. 20(14): pp.15093-15099 (2012). 48. Ding, R., et al., “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Optics Communications. 321: pp.124-133 (2014). 49. Ding, J., et al., “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Optics Express. 20(3): pp.3209-3218 (2012). 50. Lee, H.Y. and Itoh, T., “Phenomenological loss equivalence method for planar quasi-TEM transmission lines with a thin normal conductor or superconductor,” IEEE Transactions on Microwave Theory and Techniques. 37(12): pp.1904-1909 (1989). 51. Milanovic, V., et al., “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Transactions on Microwave Theory and Techniques. 46(5): pp.632-640 (1998). 52. Erli, C. and Chou, S.Y., “Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments,” IEEE Transactions on Microwave Theory and Techniques. 45(6): pp.939-945 (1997). 53. Wang, J., CMOS-Compatible Key Engineering Devices for High-Speed Silicon-Based Optical Interconnections (Springer Link, 2018). 54. Rao, N.N., Elements of Engineering Electromagnetics, 6th ed. (Prentice Hall India, 2006). 55. Hunsperger, R., Integrated Optics - Theory and Technology, 6th ed. (Springer, 2009). 56. Chuang, S.L., Physics of Optoelectronic Devices (Wiley Series In Pure and Applied Optics, 2009). 57. 李嗣涔、管傑雄、與 孫台平,半導體元件物理 (三民書局,1995)。 58. Neamen, D.A., Semiconductor Physics And Devices: Basic Principles, 3th ed. (McGraw-Hill, 2003). 59. Taur, Y. and Ning, T.H., Fundamentals of Modern VLSI Devices, 2nd ed. (Cambridge Univ Pr, 2009). 60. Chrostowski, L. and Hochberg, M., Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015). 61. Weber, W.H., McCarthy, S.L., and Ford, G.W., “Perturbation Theory Applied to Gain or Loss in an Optical Waveguide,” Applied Optics. 13(4): pp.715_1-716 (1974). 62. HAUS, H.A., WAVES AND FIELDS IN OPTOELECTRONICS (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984). 63. Young Rack Kwon, V.M.H., student member, ieee, and Keith S. Champlin, member, ieee, “Quasi-TEM Analysis of “Slow-Wave” Mode Propagation on Coplanar Microstructure MIS Transmission Lines,” IEEE Transactions on Microwave Theory and Techniques. 35(6): pp.545-551 (1987). 64. Veyres, C. and Fouad Hanna, V., “Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions,” International Journal of Electronics. 48(1): pp.47-56 (1980). 65. Simons, R.N., Coplanar Waveguide, Circuits, Components, and Systems (John Wiley and Sons Inc., 2001). 66. Hilberg, W., “From Approximations to Exact Relations for Characteristic Impedances,” IEEE Transactions on Microwave Theory and Techniques. 17(5): pp.259-265 (1969). 67. Lin, S.H. and Wang, S.-Y., “High-throughput GaAs PIN electrooptic modulator with a 3-dB bandwidth of 9.6 GHz at 1.3 μm,” Applied Optics. 26(9): pp.1696-1700 (1987). 68. Knowledge Base. Retrieved on April 07, 2019, from https://kb.lumerical.com/index.html 69. Burden, R.L. and Faires, J.D., “10: Newton's Methods; Quasi-Newton Methods,” in Numerical Analysis, 9th ed. (BROOKS/COLE, 2010). 70. Nonlinear Systems - Newton’s Method. (2018). Retrieved on April 10, 2019, from http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture13.pdf 71. Introduction to Genetic Algorithms - Including Example Code (July 7, 2017). Retrieved on April 10, 2019, from https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3 72. Xu, H., et al., “High-speed silicon modulator with band equalization,” Optics Letters. 39(16): pp.4839-4842 (2014). 73. Yu, H., et al. “Doping geometries for 40G carrier-depletion-based silicon optical modulators,” in OFC/NFOEC (2012). 74. Campenhout, J.V., et al. “Silicon Photonics for 56G NRZ Optical Interconnects,” in 2018 Optical Fiber Communications Conference and Exposition (OFC) (2018). 75. Absil, P.P., et al. “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” in SPIE OPTO (SPIE, 2015). 76. Pantouvaki, M., et al., “Active Components for 50 Gb/s NRZ-OOK Optical Interconnects in a Silicon Photonics Platform,” Journal of Lightwave Technology. 35(4): pp.631-638 (2017). 77. Perez-Galacho, D., et al., “Low voltage 25Gbps silicon Mach-Zehnder modulator in the O-band,” Optics Express. 25(10): pp.11217-11222 (2017). 78. Tu, X., et al., “Silicon optical modulator with shield coplanar waveguide electrodes,” Optics Express. 22(19): pp.23724-23731 (2014). 79. Yang, Y., et al., “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Optics Express. 22(24): pp.29978-29985 (2014). 80. Zhou, G., et al. “Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction,” in Tenth International Conference on Information Optics and Photonics (CIOP 2018) (SPIE, 2018). 81. Witzens, J., “High-Speed Silicon Photonics Modulators,” Proceedings of the IEEE. 106(12): pp.2158-2182 (2018). 82. Yong, Z., et al., “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band: erratum,” Optics Express. 26(25): pp.32757-32757 (2018). 83. Yong, Z., et al., “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band,” Optics Express. 25(7): pp.8425-8439 (2017). 84. Xi, X., et al. “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013). 85. Yang, L. and Ding, J., “High-Speed Silicon Mach–Zehnder Optical Modulator With Large Optical Bandwidth,” Journal of Lightwave Technology. 32(5): pp.966-970 (2014). 86. Heinrich, W., “Quasi-TEM description of MMIC coplanar lines including conductor-loss effects,” IEEE Transactions on Microwave Theory and Techniques. 41(1): pp.45-52 (1993). 87. Yang, R.-Y., et al., “Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate,” Journal of Applied Physics. 101(1): p.014101 (2007). 88. M. A. Ehsan, Z.Z., and Y. Yi, “Development of An Equivalent Circuit Model of A Finite Ground Coplanar Waveguide Interconnect In MIS System For Ultrabroadband Monolithic ICS,” Progress In Electromagnetics Research C. 56: pp.1-13 (2015). 89. Porkumaran, B.N.a.K., “Conformal Mapping Analysis of Various Coplanar Waveguide Structures,” ICTACT Journal on Communication Technology. 03(02) (2012). 90. Li, M., et al., “Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications,” Photonics Research. 6(2): pp.109-116 (2018). 91. Naylor, J., et al., “Slow-wave CPW slot-line transition,” IEE Proceedings - Microwaves, Antennas and Propagation. 152(5): pp.297-298 (2005). 92. Dogru, S. and Dagli, N., “0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz,” Optics Letters. 39(20): pp.6074-6077 (2014). 93. Rosa, Á., et al., “Microwave index engineering for slow-wave coplanar waveguides,” Scientific Reports. 8(1): p.5672 (2018). 94. Lee, H.-Y., “GaAs travelling-wave optical modulator using a coplanar slow-wave electrode with periodic overlays,” Optical and Quantum Electronics. 27(5): pp.487-494 (1995). 95. Fukuoka, Y. and Itoh, T., “Slow-Wave Coplanar Waveguide on Periodically Doped Semiconductor Substrate,” IEEE Transactions on Microwave Theory and Techniques. 31(12): pp.1013-1017 (1983). 96. Sakamoto, S.R., Spickermann, R., and Dagli, N., “Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators,” Electronics Letters. 31(14): pp.1183-1185 (1995). 97. JaeHyuk, S., et al., “Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators,” IEEE Transactions on Microwave Theory and Techniques. 53(2): pp.636-643 (2005). 98. Shin, J., Sakamoto, S.R., and Dagli, N., “Conductor Loss of Capacitively Loaded Slow Wave Electrodes for High-Speed Photonic Devices,” Journal of Lightwave Technology. 29(1): pp.48-52 (2011). 99. Akiyama, S., et al., “InP-Based Mach–Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” Journal of Lightwave Technology. 26(5): pp.608-615 (2008). 100. Jaeger, N.A.F. and Lee, Z.K.F., “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE Journal of Quantum Electronics. 28(8): pp.1778-1784 (1992). 101. Dong, P., Sinsky, J.H., and Gui, C., “Coplanar-waveguide-based silicon Mach–Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading,” Optics Letters. 41(18): pp.4401-4404 (2016). 102. Zhou, G., et al. “High-speed silicon electro-optic modulator based on a single multimode waveguide,” in Optical Fiber Communication Conference (OFC) 2019 (Optical Society of America, 2019). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73429 | - |
dc.description.abstract | 隨著近幾年來物聯網、大數據、及雲端計算的蓬勃發展,人們對數據傳輸的速度需求隨之驟增,數據中心 (Datacenter) 及其相關的傳輸能力 (Transmission Capacity) 顯得格外重要。幸運的是,擁有較大傳輸容量及較長傳輸距離的矽光子光互聯非常適合被使用在這些數據中心內與數據中心間的連結上,其利用相容於互補式金屬氧化物半導體 (Complementary Metal Oxide Semiconductor, CMOS) 之成熟的製程技術、低成本、及大量生產的優勢成為數據中心在中短程傳輸上的佼佼者。本篇論文旨在以相容於CMOS之製程技術為基礎、矽光子為背景領域,分析並最佳化光互聯數據發送端 (Transmitter) 中的矽基行波電光調制器 (Si-Based Traveling Wave Optical Modulator)。
本篇論文以IMEC的CMOS製程技術及規範為背景,在眾多不可變動參數的前題下分析多種可影響矽基側向型接面行波馬赫詹德電光調制器 (Si-Based Lateral Junction Traveling Wave Mach-Zehnder Modulator, Si-Based LATWMZM) 之參數、探討其對元件表現所帶來的對立影響、並提出考量射頻損耗之調制效率、插入損耗、及消光比與Lumerical MODE Solution, FDE Solver解出之模態電場數值解及P-N接面於逆偏情形下之一維近似閉合解進行重疊積分,搭配自定義之基因演算法優化當元件操作在光波段1310 nm之調制及射頻表現。在此以 的消光比為優化前題,探討並優化兩種不同射頻信號 命題下的3-dB調制頻寬。優化後之調制頻寬分別為56 GHz與67 GHz、調制效率分別為1.12 V-cm與1.26 V-cm,並以Lumerical Interconnect驗證得出眼圖之消光比大於9 dB。最後,本篇論文以均勻的製程誤差為假設前題並分析其造成的製程容忍度。在製程容忍度分析中,本篇論文參考IMEC提供的製程誤差 (一個標準差大約為7 nm),分析結果顯示當製程誤差至多到達20 nm時,會分別造成電光3-dB調制頻寬約10 GHz及消光比最多約0.5 dB的誤差值。 | zh_TW |
dc.description.abstract | With the bloom of big data, Internet of things, and cloud computing in recent years, the need for the speed of data transmission is increasing. Thus, datacenters and the related transmission capacity have become important. Fortunately, the silicon photonic optical interconnect featuring large transmission capacity and long transmission distance is very suitable for the inter- and intra- datacenter data transmission. Leveraging the advantages of mature fabrication technology, low cost, and mass production from the Complementary Metal Oxide Semiconductor (CMOS) manufacturing technology, the Silicon Photonics platform has become the leading option for the mid- and short- range transmission for the datacenters. Therefore, this thesis aims at the analysis and optimization of the Si-Based Traveling Wave Optical Modulator used in an optical interconnect transmitter based on the CMOS-compatible fabrication technology and the background realm of Silicon Photonics.
With the considerations of the CMOS fabrication technology and the mask rule from IMEC and with the assumption of multiple unchangeable parameters, the thesis analyzed various parameters affecting Si-Based Lateral Junction Traveling Wave Mach-Zehnder Modulator (Si-Based LATWMZM) and discussed various device performances with the use of the modified attenuation-considered figures of merit including modulation efficiency, insertion loss IL, and extinction ratio ER, as well as the overlap integration between the electric field extracted from FDE solver in Lumerical MODE Solution and the analytical carrier density approximation of the reversed-biased P-N junction. In addition, by using the user-defined genetic algorithm, the performance of the device operating at the optical wavelength 1310 nm was optimized. Also, the discussion and the E-O bandwidth optimization of the two different cases with radio-frequency peak-to-peak voltages 2.5 Vpp and 3.5 Vpp were made under the constraints of ER >= 5.5 dB and SEE11 <= -9 dB. The optimization results show that the E-O bandwidth and the modulation efficiency for 2.5 Vpp and 3.5 Vpp are (56 GHz, 1.12 V-cm) and (67 GHz, 1.26 V-cm) respectively. After the optimization, the validations of eye diagrams both with ER > 9 dB were simulated by Lumerical Interconnect. In the last part, the thesis analyzed the tolerance of the device to the fabrication error. The results showed that the possible reductions of BW and ER are about 10 GHz and 0.5 dB respectively for a uniform fabrication error of 20 nm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:34:23Z (GMT). No. of bitstreams: 1 ntu-108-R04941128-1.pdf: 8173645 bytes, checksum: 3785aa534ce24c84a9625221922d45f2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 中文摘要 ii 英文摘要 iii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xv 第1章 導論 1 1.1 研究背景 1 1.2 矽光子 (Silicon Photonics) 3 1.3 光調制器 (Optical Modulators) 4 1.4 研究動機 4 1.5 論文架構 7 第2章 背景理論及數值方法 8 2.1 基礎理論 8 2.1.1 馬克斯威爾方程式 (Maxwell’s Equations) 8 2.1.2 波動方程式 (Wave Equations) 9 2.1.3 模態場 (Mode Field)、等效折射率 (Effective Refractive Index)、與群指數 (Group Index) 10 2.1.4 漂移擴散模型 (Drift-Diffusion Model, DD Model) 12 2.1.5 載子於矽中的反應時間 (Response Time) 13 2.1.6 P-N接面的逆偏一維近似解析公式 15 2.1.7 德魯德-勞倫茲公式 (Drude-Lorentz Equations) 及自由載子電漿色散效應 (Free-Carrier Plasma Dispersion, FCPD, Effect) 16 2.1.8 矽中的載子誘發效應 (Carrier-Induced Effect) 17 2.1.9 傳輸線 (Transmission Line) 的等效模型 (RLGC model) 18 2.1.10 共面波導 (Coplanar Waveguide) 的保角轉換 (Conformal Mapping) 及部分電容法 (Partial Capacitance Approach) 21 2.1.11 P-N接面電容之邊緣效應 (Fringing Effect) 27 2.1.12 相移二極體 (Phase Shifter Diode, PSD) 之等效並聯電阻 29 2.1.13 基於共面波導之行波調制器 (Traveling Wave Modulator, TWM) 的傳輸線等效模型 30 2.1.14 馬赫詹德干涉儀 (Mach-Zehnder Interferometer, MZI) 31 2.1.15 行波電光調制器的電光調制頻率響應 (E-O Modulation Frequency Response) 33 2.1.16 調制器的效能指數 (Figure of Merit, FoM) 35 A. 調制效率 (Modulation Efficiency) 35 B. 插入損耗 (Insertion Loss) IL 35 C. 消光比 (Extinction Ratio) ER 35 D. 調制頻寬 (Modulation Bandwidth) 或 BW 36 2.2 數值方法 36 2.2.1 載子傳輸求解器 (Charge Transport Solver) 36 A. 漂移-擴散方程式 (Drift-Diffusion Equation) 36 B. 泊松方程式 (Poisson’s Equation) 37 C. 電荷守恆 (Charge Conservation) 37 2.2.2 適用於非線性命題之牛頓法 (Newton’s Method) 37 2.2.3 有限元素特徵模態法 (Finite Element Eigenmode Method, FEEM) 38 2.2.4 有限差分特徵模態 (Finite Difference Eigenmode, FDE)求解器 38 2.2.5 基因演算法 (Genetic Algorithm, GA) 39 2.3 本研究所用之模擬軟體及其用途 40 第3章 文獻回顧 41 3.1 逆偏P-N接面摻雜位置或形狀之文獻探討 41 3.1.1 側向型接面 (Lateral Junction) 41 3.1.2 指叉型接面 (Interleaved/Interdigitated Junction) 42 3.1.3 其他形狀接面 42 3.2 不同的光訊號調制機制之文獻探討 43 3.2.1 共振腔 (Resonator) 43 3.2.2 光干涉 (Interferometer) 43 3.3 不同的射頻波導結構之文獻探討 44 3.3.1 共面微帶線 (Coplanar Stripline, CPS) 44 3.3.2 共面波導 (Coplanar Waveguide, CPW) 45 3.3.3 無基板 (Substrate-Free) 之共面結構 46 3.3.4 慢波 (Slow Wave) 式電極結構 47 第4章 矽基馬赫詹德共面波導側向接面型行波電光調制器的分析與優化 49 4.1 矽基馬赫詹德共面波導側向接面型行波電光調制器 49 4.1.1 穩態表現 (Steady-State Performance) 50 4.1.2 射頻表現 (RF Performance) 58 4.2 LA (Lateral-Junction based) TWMZM的影響因素 61 4.2.1 摻雜之濃度與位置 61 A. 接面電容值 (Junction Capacitance) 61 B. 接面位移 (Junction Offset) 61 C. FCPD效應引起之材料折射率變化分佈 62 D. FCPD效應引起之額外損耗分佈 63 4.2.2 脊型波導 (Rib Waveguide) 64 A. 可傳播之光波導模態數 64 B. 光波導模態之場形 64 C. PSD之調制效率 65 D. PSD之光損耗 65 E. TWMZM之射頻表現 66 4.2.3 共面波導 67 A. RLGC Model 67 B. 特徵阻抗 68 C. 複數之傳播常數 68 D. S參數之頻率響應圖 69 4.2.4 外加偏壓 70 A. 直流逆偏壓 70 B. 小信號峰對峰電壓 (Peak to Peak Voltage, ) 70 4.2.5 主動區長度 70 A. 射頻損耗 70 B. 消光比與插入損耗 70 4.3 本篇論文之最佳化流程 74 4.3.1 光波導之數值解萃取 74 4.3.2 適應函數 (Fitness Function) 75 A. 射頻表現 75 B. 考量射頻損耗下的調制效率、插入損耗、及消光比 75 4.3.3 利用基因演算法優化元件適應函數 76 A. TWMZMOTE1 ( ) 78 B. TWMZMOTE2 ( ) 81 4.3.4 商用軟體Lumerical Interconnect驗證 85 A. MZMOTE_TWLABT_380_1500 85 B. TWMZMOTE1 87 C. TWMZMOTE2 89 4.3.5 製程容忍度分析 91 A. TWMZMOTE1 91 B. TWMZMOTE2 93 第5章 結語及未來展望 95 5.1 結語 95 5.2 未來展望 95 參考文獻 97 | |
dc.language.iso | zh-TW | |
dc.title | 利用基因演算法優化矽基側向型接面馬赫詹德行波電光調制器之頻寬 | zh_TW |
dc.title | Optimization of bandwidth of Si-Based Lateral Junction Traveling Wave Mach-Zehnder Modulator by using Genetic Algorithm | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張書維(Shu-Wei Chang),林銘偉(Ming-Wei Lin),傅柏翰(Po-Han Fu) | |
dc.subject.keyword | 數據中心,光互聯,光互聯模組,發送端,矽光子,調制,調制器,光調制器,矽基光調制器,行波電光調制器,調制頻寬,基因演算法, | zh_TW |
dc.subject.keyword | datacenter,optical interconnect,optical interconnect module,transmitter,silicon photonics,modulation,modulator,optical modulator,Si-based modulator,traveling wave modulator,modulation bandwidth,genetic algorithm, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201900765 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-05-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 7.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。