請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7340完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿廷(Yu-Ting Hsu) | |
| dc.contributor.author | Po-An Chen | en |
| dc.contributor.author | 陳柏安 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:41:47Z | - |
| dc.date.available | 2022-02-17 | |
| dc.date.available | 2021-05-19T17:41:47Z | - |
| dc.date.copyright | 2020-02-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-13 | |
| dc.identifier.citation | 丁育群、李威儀(2005)。都市窳陋地區環境災害評估方法之研擬(一)社區空間致災風險評估之研究。內政部建築研究所。
方禎璋(2000)。都市老舊住宅社區火災防治對策之研究。國立臺北科技大學土木與防災技術研究所碩士論文,臺北市。 吳榮平(2007)。都市火災空間分布及發生因素之研究。國立臺北大學都市計劃研究所博士論文,新北市。 李孟原(2018)。消防通道在火災搶救精進之研究-以台北市為例。中華科技大學土木防災工程研究所在職專班碩士論文,臺北市。 林元祥(2004)。住宅建築物火災財物損失影響因素之分析與危險指標之建立。風險管理學報,6(1),頁85-103。 林忠億、陳火炎(2009)。狹小巷道地區建築物消防救災對策探討例。中央警察大學災害防救學報,10(1),頁107-125。 洪超倫(2005)。建築物環境因素對火災搶救影響之研究。國立臺北科技大學土木與防災研究所碩士論文,臺北市。 張松源(2005)。台北市都市更新案執行問題與改善策略之研究。國立臺灣科技大學建築系碩士論文,臺北市。 張書鳴(2014)。狹小巷弄消防搶救時間分析與探討-以新北市鶯歌區為例。東南科技大學營建科技與防災研究所碩士論文,新北市。 張學聖、李佳蓁、陳姿伶(2009)。都市環境與火災風險及救災區位檢討之研究。規劃學報(35),頁13-26。 doi: 10.6404/jp.200901.0013 郭文田、邱榮振(2008)。高雄市火災發生潛勢分析。建築學報(63),頁47-72。 都市計畫定期通盤檢討實施辦法(1997)。 陳弘毅(2003)。消防學(3),頁10-26~27。台北市:鼎茂圖書。 陳育瑛(2004)。台中市火災發生潛勢分析之研究。逢甲大學都市計畫所碩士論文,臺中市。 陳建忠、張隆盛(2005)。促進窳陋社區推動都市更新防災策略及法制事項之研究。內政部建築研究所。 陳建忠、黃志弘(2000)。都市窳陋密集地區防災改善措施之研究。內政部建築研究所。 提升狹小巷道消防搶救指導計畫(2003)。 曾東和(2009)。臺北市劃設消防通道之調查研究。中國文化大學建築及都市計劃研究所碩士論文,臺北市。 黃崑鏜(1993)。火災特性與土地使用、空間結構之關連性探討──以台北市78年至80年之建築物火災案例為對象。國立臺灣大學建築與城鄉研究所碩士論文,臺北市。 黃鼎彥(2012)。古蹟歷史建築街廓火災搶救技術與防災計畫之研究。中央警察大學消防科學研究所碩士論文,桃園縣。 新北市政府消防局狹小巷道消防救災動線管理要點(2015)。 葉蓉蓉(2010)。新竹市打通瓶頸巷道政策執行網絡之研究。中華大學行政管理學系碩士論文,新竹市。 道路交通安全規則(2003)。 劃設消防車輛救災活動空間指導原則(2003)。 熊光華(1999)。消防實務。載於陳金蓮(主編),消防百科全書(頁213)。桃園縣:中央警察大學。 監察院(2004),台北縣政府消防局對於蘆洲大囍市社區大火,未於第一時間完全掌握,調度指揮不當;內政部及該府未實質督導,均有違失案。載於九十三年監察院糾正案彙編(一)。(頁106-132)。 監察院(2012),臺北市政府未積極研訂停車管理相關法令,防範非消防通道違規停車,達到疏散及救援之功效等情,核有違失案。載於中華民國101年監察院糾正案彙編。(頁577-581)。 消防通道劃設及管理作業程序(2003)。 臺北市政府消防局108年度執行火災搶救困難地區暨搶救不易地區火災搶救應變計畫(2019)。 臺北市政府消防局劃設消防通道清冊,2019年12月22日,取自:https://www.tfd.gov.tw/class_firerd.php?id=959。 臺北市政府消防車輛救災活動空間改善計畫(2013)。 臺北市搶救不易狹小巷道清冊,2019年12月22日,取自:https://www.tfd.gov.tw/class_alleyway.php?id=965。 趙森軒(2012)。位於狹小巷弄之老舊建築影響消防救助之評估-以新北市板橋區為例。國立臺灣科技大學建築系碩士論文,臺北市。 蔣得心(2004)。都市地區街廓層級建物火災風險區劃方法研究。臺灣大學建築與城鄉研究所碩士論文,臺北市。 鄧子正(1999)。火災搶救初期反應之作業內涵與執行狀況評估以臺北市之消防作業為實證研究。警學叢刊,30(1),頁142。 蕭大山(2003)。火災風險度評估方法之研究-以高雄市為例。中國文化大學建築及都市計畫研究所碩士論文,臺北市。 謝濠光(2013)。建築物火災風險因子建模之研究。中央警察大學消防科學研究所碩士論文,桃園縣。 顏振嘉、葉吉堂(1993)。消防警察概論,頁35。臺北市:臺灣警察專科學校。 Andersson, T., & Värbrand, P. (2007). Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58(2), 195-201. Aurenhammer, F., & Klein, R. (2000). Voronoi diagrams. Handbook of computational geometry, 5(10), 201-290. Bélanger, V., Ruiz, A., & Soriano, P. (2018). Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. European Journal of Operational Research. doi: 10.1016/j.ejor.2018.02.055 Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport policy, 9(2), 117-127. Bianchi, G., & Church, R. L. (1988). A hybrid FLEET model for emergency medical service system design. Social Science & Medicine, 26(1), 163-171. Casey, J. F. (1991). The fire chief's handbook. New York: Pennwell Publishing Co. Challands, N. (2010). The relationships between fire service response time and fire outcomes. Fire Technology, 46(3), 665-676. Chandler, S., Chapman, A., & Hollington, S. (1984). Fire incidence, housing and social conditions―The urban situation in Britain. Fire Prevention(172), 15-20. Chen, A., Yang, C., Kongsomsaksakul, S., & Lee, M. (2007). Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics, 7(3), 241-256. Chu, J. C., & Chen, S.-C. (2015). Optimization of transportation-infrastructure-system protection considering weighted connectivity reliability. Journal of Infrastructure Systems, 22(1), 04015008. Corcoran, J., Higgs, G., Brunsdon, C., Ware, A., & Norman, P. (2007). The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study. Computers, Environment and Urban Systems, 31(6), 623-647. doi: https://doi.org/10.1016/j.compenvurbsys.2007.01.002 Corman, H., Ignall, E. J., Rider, K. L., & Stevenson, A. (1976). Fire casualties and their relation to fire company response distance and demographic factors. Fire Technology, 12(3), 193-203. D'este, G. a., & Taylor, M. (2003). Network vulnerability: an approach to reliability analysis at the level of national strategic transport networks. Paper presented at the The Network Reliability of Transport: Proceedings of the 1st International Symposium on Transportation Network Reliability (INSTR). Daskin, M. S. (1982). Application of an expected covering model to emergency medical service system design. Decision Sciences, 13(3), 416-439. Daskin, M. S. (1987). Location, dispatching and routing models for emergency services with stochastic travel times. In A. Ghosh & G. Rushton (Eds.), Spatial analysis and location-allocation models (Vol. 9, pp. 224-265). New York: Van Nostrand Reinhold. Daskin, M. S., & Stern, E. H. (1981). A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation science, 15(2), 137-152. Du, L., & Peeta, S. (2014). A stochastic optimization model to reduce expected post-disaster response time through pre-disaster investment decisions. Networks and Spatial Economics, 14(2), 271-295. Eaton, D. J., Sánchez U, H. M. L., Lantigua, R. R., & Morgan, J. (1986). Determining ambulance deployment in santo domingo, dominican republic. Journal of the Operational Research Society, 37(2), 113-126. Fu, L., Sun, D., & Rilett, L. R. (2006). Heuristic shortest path algorithms for transportation applications: State of the art. Computers & Operations Research, 33(11), 3324-3343. doi: https://doi.org/10.1016/j.cor.2005.03.027 Gendreau, M., Laporte, G., & Semet, F. (1997). The covering tour problem. Operations Research, 45(4), 568-576. Gendreau, M., Laporte, G., & Semet, F. (2001). A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel computing, 27(12), 1641-1653. Gendreau, M., Laporte, G., & Semet, F. (2006). The maximal expected coverage relocation problem for emergency vehicles. Journal of the Operational Research Society, 57(1), 22-28. Hogan, K., & ReVelle, C. (1986). Concepts and applications of backup coverage. Management Science, 32(11), 1434-1444. Hogg, J. M. (1973). Losses in relation to the fire brigade's attendance time. Fire Research Report (Vol. 5, pp. 73). London: Home Office Scientific Advisory Branch. Ingolfsson, A., Budge, S., & Erkut, E. (2008). Optimal ambulance location with random delays and travel times. Health Care management science, 11(3), 262-274. Fire Brigades Union. (2010). It’s about time: Why emergency response times matter to firefighters and the public. Jenelius, E., Petersen, T., & Mattsson, L.-G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537-560. Jennings, C. R. (1999). Socioeconomic characteristics and their relationship to fire incidence: a review of the literature. Fire Technology, 35(1), 7-34. Kakuchi, S. (2008). Study on evaluation of improving accessibility of fire engines by corner cut of narrow alleys in crowded wooden houses districts for fire damage mitigation. (Ph. D.), Tokyo Metropolitan University, Tokyo, Japan. Retrieved from http://ci.nii.ac.jp/naid/500000455355 Kalos, M. H., & Whitlock, P. A. (2009). Monte carlo methods: John Wiley & Sons. Kc, K., & Corcoran, J. (2017). Modelling residential fire incident response times: A spatial analytic approach. Applied Geography, 84, 64-74. doi: 10.1016/j.apgeog.2017.03.004 Knoop, V. L., Snelder, M., van Zuylen, H. J., & Hoogendoorn, S. P. (2012). Link-level vulnerability indicators for real-world networks. Transportation Research Part A: Policy and Practice, 46(5), 843-854. Kolesar, P., Walker, W., & Hausner, J. (1975). Determining the relation between fire engine travel times and travel distances in New York City. Operations Research, 23(4), 614-627. Liu, B. (1997). Route finding by using knowledge about the road network. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27(4), 436-448. doi: 10.1109/3468.594911 Lo, S. M. (1999). A fire safety assessment system for existing buildings. Fire Technology, 35(2), 131-152. Maleki, M., Majlesinasab, N., & Sepehri, M. M. (2014). Two new models for redeployment of ambulances. Computers & Industrial Engineering, 78, 271-284. Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633-1643. Peeta, S., Salman, F. S., Gunnec, D., & Viswanath, K. (2010). Pre-disaster investment decisions for strengthening a highway network. Computers & Operations Research, 37(10), 1708-1719. Pietrzak, L. M. (1979). The effect of fire engine road performance on alarm response travel times. Fire Technology, 15(2), 114-121. Repede, J. F., & Bernardo, J. J. (1994). Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. European Journal of Operational Research, 75(3), 567-581. Rodríguez-Núñez, E., & García-Palomares, J. C. (2014). Measuring the vulnerability of public transport networks. Journal of Transport Geography, 35, 50-63. Rupi, F., Bernardi, S., Rossi, G., & Danesi, A. (2015). The evaluation of road network vulnerability in mountainous areas: a case study. Networks and Spatial Economics, 15(2), 397-411. Sasaki, K., & Sekizawa, A. (2014). Risk assessment of fire spread potential for a densely built-up area using a simulation model of fire spread and fire-fighting. Bulletin of Japan Association for Fire Science and Engineering, 64(3), 29-37. Saydam, C., Rajagopalan, H. K., Sharer, E., & Lawrimore-Belanger, K. (2013). The dynamic redeployment coverage location model. Health Systems, 2(2), 103-119. Schichl, H., & Sellmann, M. (2015). Predisaster preparation of transportation networks. Paper presented at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Shapiro, J., Waxman, J., & Nir, D. (1992). Level graphs and approximate shortest path algorithms. Networks, 22(7), 691-717. Sohn, J. (2006). Evaluating the significance of highway network links under the flood damage: An accessibility approach. Transportation Research Part A: Policy and Practice, 40(6), 491-506. U.S. Fire Administration/National Fire Data Center. (2006). Structure Fire Response Times. Topical Fire Research Series (Vol. 5). Su, Q., Luo, Q., & Huang, S. H. (2015). Cost-effective analyses for emergency medical services deployment: A case study in Shanghai. International Journal of Production Economics, 163, 112-123. Swersey, A. J. (1994). The deployment of police, fire, and emergency medical units Handbooks in operations research and management science (Vol. 6, pp. 151-200): Elsevier. Taylor, M. A., Sekhar, S. V., & D'Este, G. M. (2006). Application of accessibility based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3-4), 267-291. Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373. Westgate, B. S., Woodard, D. B., Matteson, D. S., & Henderson, S. G. (2013). Travel time estimation for ambulances using Bayesian data augmentation. The Annals of Applied Statistics, 7(2), 1139-1161. Wu, X., Sheldon, D., & Zilberstein, S. (2016). Optimizing resilience in large scale networks. Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence. Yücel, E., Salman, F. S., & Arsik, I. (2018). Improving post-disaster road network accessibility by strengthening links against failures. European Journal of Operational Research, 269(2), 406-422. doi: https://doi.org/10.1016/j.ejor.2018.02.015 Yasukawa, M. K., & Gagliardi, F. M. (1988). Estimated apparatus speeds by street type in Chicago, Illinois. Fire Technology, 24(4), 291-298. Zhang, Z., He, Q., Gou, J., & Li, X. (2016). Performance measure for reliable travel time of emergency vehicles. Transportation Research Part C: Emerging Technologies, 65, 97-110. doi: 10.1016/j.trc.2016.01.015 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7340 | - |
| dc.description.abstract | 狹小巷道是造成消防延誤的潛在因素,不論是巷道的寬度不足或是違停車輛的停放都可能阻礙消防車的通行,因而延誤救災時機。由於過往學界均未有發展以網路設計提升消防效率之研究,因此本論文旨在提供一個路網方法,以輔助狹小巷道改善之決策,其中包括(1)劃設消防通道(2)拓寬狹小巷道。
首先,以路網的Voronoi圖劃分巷道火災風險負責範圍,再評估建築風險以計算個別巷道的火災風險。考量到消防單位在巷道中的移動限制,本研究建構了雙層隨機阻塞路網來描述消防救災之行動,並藉由分割街廓子路網的方式,將替代路徑的搜索範圍加以限縮。接著,利用蒙地卡羅方法估計出巷道旅行時間之期望值,以此作為消防服務可及性的指標。 在巷道保障通行之關鍵性上,逐一評估巷道通行受到確保之下所增進的消防可及性,再利用關鍵性之排序作為消防通道劃設之參考。而在巷道拓寬的部分,首先分別列舉出個別街廓的巷道拓寬計畫,並計算其效益與成本,再以背包問題決定出限制成本下的巷道拓寬計畫。 在案例分析中,我們將研究方法應用於台北市西區舊市街。結果顯示,本模型能夠辨識保障通行之最關鍵巷道,另外也能求得最有利的巷道拓寬決策,從而促進狹小巷道社區之消防可及性。本研究建議後續研究者進一步探索巷道阻塞之特性,或考慮消防滅火與水源中繼之因素,藉此進一步精進模型的建立。 | zh_TW |
| dc.description.abstract | Narrow Alleys are the potential cause of delays in firefighting operations. Once a fire breaks out in an old urban community, fire engines may be blocked in an alley due to insufficient width or illegally parked vehicles, thereby delay firefighting operation. However, few existing studies have assessed the threat of narrow alleys and improvement of firefighting in a systematic manner. Hence, this thesis proposes a network-based method to support decision-making in alley improvement measures, which include (1) marking fire lanes and (2) widening alleys.
First, the Voronoi diagram of the road network is used to divide alley-based zone, and then the fire risk of each alley is estimate by summing up the fire risk of buildings within the alley. Considering the mobility of fire crews in alleys, we construct a two-level road network with stochastic alley blockage to describe pathfinding in firefighting. Also, the division of block subnetworks limits the searching space of alternative paths. Then, the Monte Carlo method is used to estimate the expected travel time over targeted alleys to evaluate fire service accessibility on the network. To assess the criticality based on passability assurance of alleys, a full-scan approach is conducted to evaluate the improved accessibility index after ensuring their passability. The ranking of the alley criticality provides a reference to the priority of setting fire lanes. To determine the widening alley, this study proposed a block-based widening plan generation process and evaluate the benefit and cost of each widening plan. Then, a knapsack problem is utilized to determine the widening decision over candidate alleys with a budget constraint. In the case analysis, we apply the solution method to the western of Taipei City. It is demonstrated that this model is able to identify the most critical alleys for passability assurance and determines the most cost-effective alley widening decision to enhance the fire service accessibility in the communities. For future research, the nature of alley blockage can be further explored and fire extinguishing or water transport can be further considered to elaborate on the model and analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:47Z (GMT). No. of bitstreams: 1 ntu-109-R06521541-1.pdf: 5617764 bytes, checksum: a4a278530df498fab6527c7ebb7f8e23 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 iii ABSTRACT iv CONTENT vi LIST OF FIGURES ix LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objective 3 1.3 Organization 4 Chapter 2 Literature Review 6 2.1 Narrow Alleys and Fire 6 2.1.1 Concepts of fire response 6 2.1.2 Response time of emergency vehicle 9 2.1.3 Definition of a narrow alley 10 2.1.4 Background on fires in narrow alleys 12 2.1.5 Difficulties in firefighting in narrow alleys 15 2.1.6 Firefighting strategy and technique 17 2.1.7 Mitigation measures 20 2.2 Fire Risk and Geoinformatics 24 2.3 Emergency Response and Network-based Methods 26 2.3.1 Decision-making in emergency vehicle response 26 2.3.2 Network performance upon emergency response 27 2.3.3 Network design as a mitigation approach 29 2.4 Summary 31 Chapter 3 Methodology 32 3.1 Alley-based Fire Risk Map 35 3.1.1 Fire risk for buildings 36 3.1.2 Alley-based zoning mechanism 39 3.2 Network Construction 41 3.2.1 Assumptions and considerations 41 3.2.2 Two-level network structure 43 3.2.3 link blockage on the stochastic network 47 3.3 Block Subnetwork Construction 49 3.4 Expected Travel Time Estimation 53 3.4.1 Estimation of average travel time to the targeted alley 54 3.4.2 Algorithm for searching alternative paths 58 3.4.3 Ranking of travel time scenarios 60 3.4.4 Estimation of expected travel time 61 3.5 Alley Criticality Based on Passability Assurance 62 3.6 Widening of Narrow Alleys 64 3.6.1 Problem formulation 64 3.6.2 Heuristic algorithm 66 3.7 Overall Procedure 68 Chapter 4 Case Study 71 4.1 Data Description 72 4.2 Result Analysis 79 4.2.1 Sample size analysis 80 4.2.2 Base case 81 4.2.3 Alley criticality based on passability assurance 84 4.2.4 Widening narrow alleys 92 Chapter 5 Conclusions 96 5.1 Conclusions 96 5.2 Discussions and Future Work 97 REFERENCE 101 | |
| dc.language.iso | en | |
| dc.title | 考量消防應變效率之狹小巷道改善策略:
基於都市路網分析之觀點 | zh_TW |
| dc.title | Improving narrow alleys for fire response enhancement:
the perspective of urban roadway network analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃俊能(Chun-Nen Huang),黃尹男(Yin-Nan Huang),陳柏華(Albert Y. Chen) | |
| dc.subject.keyword | 狹小巷道,消防可及性,隨機阻塞,巷道改善,關鍵性,蒙地卡羅方法,沃羅諾伊圖, | zh_TW |
| dc.subject.keyword | narrow alley,fire service accessibility,stochastic blockage,alley improvement,criticality,Monte Carlo method,Voronoi diagram, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU202000433 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-02-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf | 5.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
