Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73393
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練(Ying-Lien Chen)
dc.contributor.authorZen-Chi Huangen
dc.contributor.author黃仁麒zh_TW
dc.date.accessioned2021-06-17T07:32:19Z-
dc.date.available2023-12-08
dc.date.copyright2021-03-22
dc.date.issued2020
dc.date.submitted2020-12-10
dc.identifier.citation1. 王瑞章、江汶錦、吳雅芳、林棟樑、孫文章、陳昇寬、彭瑞菊、鄭安秀、謝明憲、鍾瑞永。2011。馬鈴薯栽培管理技術。臺南區農業改良場技術專刊 100 (1):1-25。
2. 吳雅芳、林志鴻、王肇芬、鄭安秀。2011。馬鈴薯青枯病菌 Ralstonia solanacearum phylotype
II/race 3/biovar 2)於雲林縣斗南地區田間之族群密度與馬鈴薯罹病率調查。植病會刊 20:68-77。
3. 吳雅芳、鄭安秀。2008。冬季低溫仍嚴重發生的馬鈴薯青枯病(Brown Rot of Potato)。臺南區農業專訊 63:19-21。
4. 周浩平、王惠美、鄭日新、曾敏南。2007。液化澱粉芽孢桿菌 PMB01於作物病害防治之應用。高雄區農業專訓 100:20-21。
5. 林上湖、鍾文全、楊佐琦。2010。台灣馬鈴薯產業 80年之回顧與展望。植物種苗 12 (4):1-23。
6. 林碩興、林宜賢。2015。應用 Bacillus amyloliquefaciens PMB01防治甜椒細菌性斑點病。國立屏東科技大學植物醫學系碩士學位論文。屏東。台灣。73 pp。
7. 林靜宜、林慧如。2018。利用中和磷酸溶液防治馬鈴薯青枯病。台灣農業研究 67 (4):377-386。
8. 徐世典。1991。台灣植物青枯病菌之生態與防治。植保會刊 33:72-79。
9. 徐孟豪、陳保良。2011。臺灣植物健康種苗驗證體系推動之歷程與展望。植物種苗生技 25:13-15。
10. 曹幸之、鄭汀欽、曾明懋。1994。馬鈴薯育種之現況。根莖作物生產改進及加工利用研討會專刊 45:29-37。
11. 莊明富, 羅淑芳, 林靜宜。2015。溫度對青枯病菌致病力之影響與馬鈴薯品種(系)對青枯病反應之初步評估。台灣農業研究 64(2):89-98。
12. 郭建志、陳俊位、廖君達、陳葦玲、蔡宜峯。2014。液化澱粉芽孢桿菌在作物病害防治的開發與應用。臺中區農業改良場特刊 121:69-86。
13. 楊秀珠、余思葳、黃裕銘。2012。馬鈴薯之病蟲害發生與管理。合理、安全及有效使用農藥輔導教材。台中。台灣。39 pp。
14. 劉永銓、廖仁宏。2007。液化澱粉芽孢桿菌 Ba-BPD1及其抗菌脂胜肽防治作物病害之研究。國立中興大學化學工程學系博士學位論文。台中。台灣。88 pp。
15. 蔡佳欣、安寶貞、黃淑苓、呂昀陞、李佳蓉、洪子晴。2017。茄冬青枯病之發生。台灣農業研究 66 (1):44-52。
16. 謝奉家。2011。台灣芽孢桿菌生物殺菌劑的研發與應用。藥毒所專題報導 103:1-3。
17. 謝奉家。2012。具商品化潛力之多功能液化澱粉芽孢桿菌。農業生技產業季刊 32:42-47。
18. Ahemad, M., Kibret, M. 2014. Mechanisms and applications of plant growth romoting rhizobacteria: Current perspective. Journal of King Saud University - Science. 26 (1):1-20.
19. Aldon, D., Brito, B., Boucher, C., Genin, S. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19 (10):2304-2314.
20. Algburi, A., Alazzawi, S. A., Al-Ezzy, A. I. A., Weeks, R., Chistyakov, V., Chikindas, M. L. 2020. Potential probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 co-aggregate with clinical isolates of Proteus mirabilis and prevent biofilm formation. Probiotics and Antimicrobial Proteins.1-13.
21. Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Saand, M. A., Ying, C. L, Xie, G. L. 2014. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis. 63(2):59-70.
22. Arguelles, A. A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories. 8 (1):63.
23. Arrebola, E., Sivakumar, D., Bacigalupo, R., Korsten, L. 2010. Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection. 29 (4):369-377.
24. Bais, H. P., Fall, R., Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134 (1):307-319.
25. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., Argañaraz, F., Francisco, M., Villalba, J. M., Steil, L., Völker, U., Grau, R. 2019. Regulation of biofilm aging and dispersal in Bacillus subtilis by the alternative sigma factor SigB. J. Bacteriol. 201 (2):1-14.
26. Belbahri, L., Chenari, Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova, E., Oszako, T., Cherrad, S., Vacher, S., Rateb, M. E. 2017. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front. Microbiol. 8 (1438):1-15.
27. Bindel CM, Young, G. M., Sloma, A. 2004. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J. Bacteriol. 186(13):4159-4167.
28. Caiazza, N. C., Merritt, J. H., Brothers, K. M., O'Toole, G. A. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189(9):3603-3612.
29. Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J. D. Cai, Y. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8(1):1-14.
30. Chamedjeu, R. R., Masanga, J., Matiru, V., Runo, S. 2019. Potential use of soil bacteria associated with potato rhizosphere as bio-control agents for effective management of bacterial wilt disease. J. Microbiol. Res. 9 (1):12-24.
31. Chang, J. J., Wu, P. Y., Lin, Y. N., Deng, W. L., Lin, Y. H. 2019. Intensification of PAMP-triggered immunity in watermelon by Bacillus spp. strains as a strategy for controlling bacterial fruit blotch disease. J Plant Med. 61 (1):39-48.
32. Chen, D., Liu, X., Li, C., Tian, W., Shen, Q., Shen, B. 2014. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J. Environ. Manage. 137:120-127.
33. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., Guo, J. H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 15 (3):848-864.
34. Chowdhury, S. P., Hartmann, A., Gao, X., Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front. Microbiol. 6 (780):1-11.
35. Ciampi, L., Sequeira, L. 1980. Influence of temperature on virulence of race 3 strains of Pseudomonas solanacearum. American Potato Journal. 57(7):307-317.
36. Compaoré, C. S., Nielsen, D. S., Ouoba, L. I. I., Berner, T. S., Nielsen, K. F., Sawadogo, L. H., Diawara, B., Ouédraogo, G. A., Jakobsen, M., Thorsen, L. 2013. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int. J. Food Microbiol. 162 (3):297-307.
37. Denny, T. 2007. Plant pathogenic Ralstonia species. p. 573-644. in: plant-associated bacteria. (Gnanamanickam, S. S. ed.) Springer, Dordrecht, Nederland. 712. pp.
38. Doke, N. 1985. NADPH-dependent O2−generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol. Plant Pathol. 27 (3):311-322.
39. Doolotkeldieva, T., Bobusheva, S., Suleymankisi, A. 2016. Biological Control of Erwinia carotovora spp. carotovora by Streptomyces Species. Adv. Microbiol. 6:104-114.
40. Fan, H., Zhang, Z., Li, Y., Zhang, X., Duan, Y., Wang, Q. 2017. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization. Frontiers in microbiology. 8:1973-1973.
41. Farzand, A., Moosa, A., Zubair, M., Khan, A. R., Massawe, V. C., Tahir, H. A. S., Sheikh, T. M. M., Ayaz, M., Gao, X. 2019. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules. 9 (10):1-17.
42. Fegan, M., Holoway, G., Hayward, A., Timmis, J. 1998. Development of a diagnostic test based on the polymerase chain reaction (PCR) to identify strains of R. solanacearum exhibiting the biovar 2 genotype. p. 34–43. in: Bacterial Wilt Disease. (Prior, P., Allen, C., Elphinstone, J. eds.) Springer, Berlin, Heidelberg. 449 pp.
43. Fegan, M., Prior P. 2005. How complex is the “Ralstonia Solanacearum species complex. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. p. 449-461. in: APS Press. (Allen, C.,Prior P., Hayward A.C. eds.) Springer, Minnesota, America. 510 pp.
44. El-Habbaa, G. M., Mohammed, F. G., Youssef, M. S. 2016. Detection and virulence of Ralstonia solanacearum the causal of potato brown rot disease. Int. J. Sci. Eng. Res. 7 (1):1209-1217.
45. Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187 (4):920-928.
46. Haggag, W. M., Timmusk, S. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104 (4):961-969.
47. Halim, V. A., Altmann, S., Ellinger, D., Eschen-Lippold, L., Miersch, O., Scheel, D., Rosahl, S. 2009. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 57 (2):230-242.
48. Hall, A. N., Subramanian, S., Oshiro, R. T., Canzoneri, A. K., Kearns, D. B. 2018. SwrD (YlzI) promotes swarming in Bacillus subtilis by increasing power to flagellar motors. J. Bacteriol. 200 (2): 1-16.
49. Hayward, A. C. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27 (2):265-277.
50. Henry, G., Deleu, M., Jourdan, E., Thonart, P., Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13 (11):1824-1837.
51. Ho, T. H., Chuang, C. Y., Zheng, J. L., Chen, H. H., Liang, Y. S., Huang, T. P., Lin, Y. H. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato. Phytopathology. Published online (November 4, 2020).
52. Idris, E. E., Iglesias, D. J., Talon, M., Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 20 (6):619-626.
53. Jadhav, H., Shaikh, S., Sayyed, R. 2017. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. p. 183–203. in: Rhizotrophs: Plant Growth to Bioremediation. (Samina, M. ed.) Springer, Singapore. 289. pp.
54. Jan, A. T., Azam, M., Ali, A., Haq, Q. M. R. 2011. Novel approaches of beneficial Pseudomonas in mitigation of plant diseases – an appraisal. J. Plant Interact. 6 (4):195-205.
55. Jaunet, T. X., Wang, J. F. 1999. Variation in genotype and aggressiveness of Ralstonia solanacearum Race 1 Isolated from tomato in Taiwan. Phytopathology. 89 (4):320-327.
56. Kamal, P. K., and B. M. Gardener. 2006. Biological control of plant pathogens. The Plant Health Instructor. 2:1117-1142.
57. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., Gulati, A. 2008. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Curr. Microbiol. 57 (5):503-507.
58. Kearns, D. B. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8 (9):634-644.
59. Kubota, R., Schell, M. A., Peckham, G. D., Rue, J., Alvarez, A. M., Allen, C., Jenkins, D. M. 2011. In silico genomic subtraction guides development of highly accurate, DNA-based diagnostics for Ralstonia solanacearum race 3 biovar 2 and blood disease bacterium. J. Gen. Plant Pathol. 77 (3):182-193.
60. Lee, Y. A., Fan, S. C., Chiu, L. Y., Hsia, K. C. 2001. Isolation of an insertion sequence from Ralstonia solanacearum race 1 and its potential use for strain characterization and detection. Appl. Environ. Microbiol. 67 (9):3943-3950.
61. Liao, J. H., Chen, P. Y., Yang, Y. L., Kan, S. C., Hsieh, F. C., Liu, Y. C. 2016. Clarification of the Antagonistic Effect of the Lipopeptides Produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via In Situ MALDI-TOF IMS Analysis. Molecules. 21 (12):1670.
62. Lin, C., Tsai, C. H, Chen, P. Y., Wu, C. Y., Chang, Y. L., Yang, Y. L., Chen, Y. L. 2018. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE. 13 (4):1-17.
63. Loria, R., Kers, J., Joshi, M. 2006. Evolution of Plant Pathogenicity in Streptomyces. Annu. Rev. Phytopathol. 44 (1):469-487.
64. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M.,Shulaev, V., Breusegem, F. V. 2011. ROS signaling: the new wave? Trends Plant Sci. 16 (6):300-309.
65. Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., Kanaya, S. 2006. Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology. 152 (9):2801-2807.
66. O’Brien, P. A. 2017. Biological control of plant diseases. Australas. Plant Pathol. 46 (4):293-304.
67. Opina, N., Tavner, F., Hollway, G., Wang, J. F., Li, T. H., Maghirang, R., Fegan, M., Hayward, A. C. Krishnapillai, V., Hong, W. F., Holloway, B. W., Timmis, J. N. 1997. A novel method for development of species strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pac. J. Mol. Biol. Biotechnol. 5:19–30.
68. Ordentlich, A., Elad, Y., Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology. 78:84-87.
69. Palumbo J. D., Yuen, G. Y., Jochum, C. C., Tatum, K., Kobayashi, D. Y. 2005. Mutagenesis of β-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology. 95 (6):701-707.
70. Phukan, T., Kabyashree, K., Singh, R., Sharma, P. L., Singh, N., Barman, A., Jena, B. R., Ray, S. K. 2019. Ralstonia solanacearum virulence in eggplant seedlings by the leaf-clip inoculation. Phytopathol. Res. 1(1):23.
71. Rahman, A., Uddin W, Wenner NG. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16(6):546-558.
72. Raza, W., Wei, Z., Ling, N., Huang, Q., Shen, Q. 2016. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains. J. Biotechnol. 227:43-53.
73. Singh, D., Yadav, D. 2016. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Microb. Pathog. 7:1–6.
74. Sonune, N., Garode, A. 2018. Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability. Biotechnol. Res. Innov. 2 (1):37-44.
75. Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R., Gao, X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7 (40481):1-15.
76. Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., Xu, Y. 2016. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biol. Fertil. Soils. 52 (3):341-351.
77. Tran, TM., Jacobs, J. M., Huerta, A., Milling, A., Weibel, J., Allen, C. 2016. Sensitive, secure detection of race 3 biovar 2 and native U.S. strains of Ralstonia solanacearum. Plant Dis. 100 (3):630-639.
78. Villa, J., Tsuchiya, K., Horita, M., Natural, M., Opina, N., Hyakumachi, M. 2003. DNA analysis of Ralstonia solanacearum and related bacteria based on 282-bp PCR-amplified fragment. Plant Dis. 87 (11):1337-1343.
79. Wang, Y. H., Lai, I. L., Zheng, J. L., Lin, Y. H. 2019. Using dynamic changes of chlorophyll fluorescence in Arabidopsis thaliana to evaluate plant immunity-intensifying Bacillus spp. strains. Phytopathology. 109:1566–1576.
80. Wu, Y. M. 2016. Study of Bacillus spp. on the control of strawberry anthracnose and possible mechanisms involved. Degree Thesis of Department of Plant Medicine, National Pingtung University of Science and Technology. Pingtung. Taiwan. 6 pp. (in Chinese with English abstract)
81. Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., Zhang, R. 2013. Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to Antifungal Activity and Biofilm Formation Appl. Environ. Microbiol. 79 (3):808-815.
82. Yin, H., Hong, G., Li, L., Zhang, X., Kong, Y., Sun, Z., Li, J. Chen, J., He, Y. 2019. miR156/SPL9 Regulates Reactive Oxygen Species Accumulation and Immune Response in Arabidopsis thaliana. Phytopathology. 109 (4):632-642.
83. Yoshie, Y., Goto, K., Takai, R., Iwano, M., Takayama, S., Isogai, A., Che, F. S. 2005. Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol. 22:127-135.
84. Yuliar, Nion, Y. A., Toyota K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes. Environ. 30 (1):1-11.
85. Zeng, L., Zhou, J., Li, B., Xing, D. 2015. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts. Front. Plant Sci. 6 (96):1-8.
86. Zeriouh, H., Vicente, D. A., Alejandro, P. G., Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol. 16 (7):2196-2211.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73393-
dc.description.abstract茄科青枯病為馬鈴薯和番茄重要細菌性病害,由青枯病菌Ralstonia solanacearum引起,除健康種苗、水旱輪作及合理化施肥等防治方法外,尚推薦液化澱粉芽孢桿菌Bacillus amyloliquefaciens PMB01。本實驗室曾發現液化澱粉芽孢桿菌Ba01對馬鈴薯瘡痂病具防治效果,但目前Ba01或PMB01對馬鈴薯青枯病之防治仍未有相關研究。此研究發現,Ba01可產生蛋白酶、澱粉酶、纖維素酶、脂酶等胞外水解酶,並具溶磷能力。與已上市之PMB01相比,Ba01具有較佳的澱粉、蛋白質、纖維素分解能力及溶磷效果。此外,Ba01在泳動、表面移行與生物膜生成的能力亦較佳。對峙培養試驗發現,Ba01與PMB01皆可以抑制馬鈴薯青枯病菌 race 1菌株RSN371與race 3菌株RSN245、RSN373、RSN439之生長。然而,混合Ba01與PMB01並未較單獨施用Ba01或PMB01獲得更佳拮抗青枯病菌之效果。此4株青枯病菌以RSN439具較強毒力,故作為後續試驗菌株。於盆栽試驗中,單獨接種RSN439罹病度達100%,而在分別澆灌Ba01或PMB01後,其罹病度顯著降至20% (P= 0.0009)與40% (P = 0.0135)。於植物的防禦反應,發現同時接種RSN439與Ba01或PMB01能增加活化氧(reactive oxygen species, ROS)於馬鈴薯葉片的累積。總結,液化澱粉芽孢桿菌Ba01可有效防治馬鈴薯青枯病,其作用機制可能與抑制病原菌、胞外分解酶的分泌、溶磷作用及誘導ROS累積有關。zh_TW
dc.description.abstractSolanaceae bacterial wilt caused by Ralstonia solanacearum has been an important disease of potato and tomato. Though there were no recommended bactericides, current ways to control the bacterial wilt included using bacteria-free tubers, rotation with cereals or rice, and applying Bacillus amyloliquefaciens PMB01 as a biocontrol agent. B. amyloliquefaciens Ba01 was isolated from healthy potato tuber, and demonstrated the antibacterial effect against potato common scab. In this study, we found that B. amyloliquefaciens Ba01 effectively inhibited the growth of potato bacterial wilt pathogen R. solanacearum, and it can enhance phosphate solubilization and secrete multiple extracellular enzymes, such as protease, amylase, cellulase and lipase, which could facilitate the growth of plants. Meanwhile, Ba01 exerted better swimming/swarming ability compared to PMB01, indicating it might colonize well in potato plants. We also found that Ba01 had better ability in biofilm formation than PMB01. In terms of antibacterial activity, both Ba01 and PMB01 can inhibit R. solanacearum race 1 strain RSN371, and race 3 strains RSN245, RSN373 and RSN439, but there were no synergistic effect between these two biocontrol agents. Furthermore, RSN439 has stronger virulence to potato among four R. solanacearum strains, hence we determined the disease severity of potato inoculated with R. solanacearum RSN439, and found that the disease severity significantly reduced to 20% (P= 0.0009) or 40% (P= 0.0135) after treatment with Ba01 or PMB01, respectively. As for plant defensive responses, leaves obtained from potato plants inoculated with R. solanacearum RSN439 and Ba01 or PMB01 simultaneously increased the accumulation of reactive oxygen species (ROS). In conclusion, potato bacterial wilt can be controlled by B. amyloliquefaciens Ba01 effectively due to the inhibition of R. solanacearum, the secreting of extracellular enzymes, phosphate solubilization and ROS accumulation in potato plants.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:32:19Z (GMT). No. of bitstreams: 1
U0001-0712202019452600.pdf: 3067282 bytes, checksum: 04dd728ffb299fb0b3eacb491fc8e0ac (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝…………………………………………………………………………………………………I
中文摘要……………………………………………………………………………………………II
英文摘要……………………………………………………………………………………………III
目錄…………………………………………………………………………………………………IV
圖表目錄…………………………………………………………………………………………...VII
壹、 前言
一、 臺灣的馬鈴薯品種與栽培情況……………………………………………………….....1
二、 馬鈴薯常見病害與健康種薯驗證機制……………………………………………….....2
三、 馬鈴薯青枯病的危害情況與防治方法………………………………………………….4
四、 液化澱粉芽孢桿菌簡介及以此作為生物防治資材之商品………………………….…5
五、 液化澱粉芽孢桿菌之胞外水解酶分泌與植物生長之相關性………………………….6
六、 泳動、表面移行能力和生物膜生成對拮抗菌之重要性……………………………….7
七、 活化氧累積與植物防禦系統之關係…………………………………………………….8
八、 研究目的………………………………………………………………………………….9
貳、 材料與方法
一、 菌株來源與接種源製備…………………………………………………………………10
二、 供試植物來源及種植……………………………………………………………………10
三、 青枯病菌生理小種鑑定……………………………………………….….……..………11
四、 液化澱粉芽孢桿菌Ba01、PMB01之生理生化測試
1. 生長速率測定………………………………………………….……...……………..12
2. 胞外水解酶之定性分析…………………………………….……………...………..12
3. 泳動與表面移行之能力測定…………………………………….…………….……14
4. 生物膜形成測定………………………………………………………….………….14
五、 液化澱粉芽孢桿菌Ba01、PMB01防治馬鈴薯青枯病病之比較
1. 濾紙片擴散試驗………………………………………………………….………….15
2. Ba01與PMB01濾液抑菌能力測試…………………………….……….……...….15
3. Ba01與PMB01拮抗馬鈴薯青枯病菌之加乘抑制能力測試….……….……...….16
4. 4株馬鈴薯青枯病之毒力測試……….…………….…………………….….…...….16
5. Ba01防治馬鈴薯青枯病之盆栽試驗………………………………………...….….17
6. Ba01施用對感染植株之ROS累積...……………………………….……...…....…18
7. Ba01於青枯病菌感染前後不同時期施用之盆栽試驗………….………...…….…19
參、 結果
一、 青枯病菌之生理小種鑑定……………...……………………………………………….21
二、 液化澱粉芽孢桿菌Ba01、PMB01之生理生化測試
1. 液化澱粉芽孢桿菌Ba01生長速度較PMB01快……………..……………………21
2. 液化澱粉芽孢桿菌Ba01具分泌胞外水解酶及溶磷能力…….…………………...21
3. 液化澱粉芽孢桿菌Ba01具較佳之泳動與表面移行能力….…………………..….22
4. 液化澱粉芽孢桿菌Ba01、PMB01形成生物膜之能力無顯著差異………………23
三、 液化澱粉芽孢桿菌Ba01、PMB01防治馬鈴薯青枯病之比較
1. Ba01具抑制馬鈴薯青枯病菌之能力………………………………………………24
2. 培養拮抗菌之濾液無抑制馬鈴薯青枯病菌之能力………………………………..24
3. Ba01與PMB01於抑制青枯病菌上無加乘作用………………….….……………25
4. 青枯病菌RSN439對馬鈴薯具較強毒力…………………………….…………..…25
5. Ba01具防治馬鈴薯青枯病之能力………………………………....……………….26
6. Ba01在接種青枯病菌情況下能誘導植物產生抗性……………...…….………….26
7. 施用Ba01可有效降低青枯病菌族群量…...……………………...……..…………27
肆、討論…………………………………………………………………………..……..………….29
伍、圖表…………………………………………………………………………..…..…………….32
陸、參考文獻……………………………………………………………………..…..…………….53
柒、附錄…………………………………………………………………………..…..…………….65
dc.language.isozh-TW
dc.title液化澱粉芽孢桿菌Ba01防治馬鈴薯青枯病之探討zh_TW
dc.titleBiological control of potato bacterial wilt caused by Ralstonia solanacearum with Bacillus amyloliquefaciens Ba01en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林志鴻(Chih-Hung Lin),蔡佳欣(Chia-Hsin Tsai),曾敏南(Min-Nan Tseng)
dc.subject.keyword馬鈴薯青枯病,青枯病菌,液化澱粉芽孢桿菌,生物防治,zh_TW
dc.subject.keywordPotato bacterial wilt,Ralstonia solanacearum,Bacillus amyloliquefaciens Ba01,biological control,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202004402
dc.rights.note有償授權
dc.date.accepted2020-12-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物醫學碩士學位學程zh_TW
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-0712202019452600.pdf
  目前未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved