請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73322完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李存修(Tsun-Siou Lee) | |
| dc.contributor.author | Wan-Jou Chiang | en |
| dc.contributor.author | 蔣婉柔 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:28:23Z | - |
| dc.date.available | 2024-07-17 | |
| dc.date.copyright | 2019-07-17 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-06-19 | |
| dc.identifier.citation | Alipour, E., Adolphs, C., Zaribafiyan, A., & Rounds, M. (2016), “Quantum-Inspired Hierarchical Risk Parity.” International Journal of Theoretical and Applied Finance (IJTAF), 08 (01): 13–58.
Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006), “The cross‐section of volatility and expected returns.” The Journal of Finance, 61(1), 259-299. Baker, M., Bradley, B., & Wurgler, J. (2011), “Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly.” Financial Analysts Journal, 67(1), 40-54. Benartzi, S., & Thaler, R. H. (2001), “Naive diversification strategies in defined contribution saving plans.” American economic review, 91(1), 79-98. Booth, D. G., & Fama, E. F. (1992), “Diversification returns and asset contributions.” Financial Analysts Journal, 48(3), 26-32. Boudt, K., & Peeters, B. (2013), “Asset allocation with risk factors.” Quantitative Finance Letters, 1(1), 60-65. Boudt, K., Darras, J., & Peeters, B. (2013), “Dynamic Risk‐Based Asset Allocation.” Wilmott, 2013(67), 62-65. Chaves, D., Hsu, J., Li, F., & Shakernia, O. (2011), “Risk parity portfolio vs. other asset allocation heuristic portfolios.” Journal of Investing, 20(1), 108. Choueifaty, Y., & Coignard, Y. (2008), “Toward maximum diversification.” Journal of Portfolio Management, 35(1), 40. Choueifaty, Y., Froidure, T., & Reynier, J. (2013), “Properties of the most diversified portfolio.” Journal of investment strategies, 2(2), 49-70. Clarke, R., De Silva, H., & Thorley, S. (2006), “Minimum-variance portfolios in the US equity market.” Journal of Portfolio Management, 33(1), 10. Clarke, R., De Silva, H., & Thorley, S. (2011), “Minimum-variance portfolio composition.” Journal of Portfolio Management, 37(2), 31. Connor, G., & Korajczyk, R. A. (1988), “Risk and return in an equilibrium APT: Application of a new test methodology.” Journal of financial economics, 21(2), 255-289. DeMiguel, V., & Nogales, F. J. (2009), “Portfolio selection with robust estimation.” Operations Research, 57(3), 560-577. DeMiguel, V., Garlappi, L., & Uppal, R. (2007), “Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?.” The review of Financial studies, 22(5), 1915-1953. DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009), “A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms.” Management science, 55(5), 798-812. Fama, E. F., & French, K. R. (1992), “The cross‐section of expected stock returns.” the Journal of Finance, 47(2), 427-465. Fernholz, R., Garvy, R., & Hannon, J. (1998), “Diversity-weighted indexing.” Journal of Portfolio Management, 24(2), 74. Haugen, R. A., & Baker, N. L. (1991), “The efficient market inefficiency of capitalization-weighted stock portfolios.” Journal of portfolio management, 17(3), 35. Inker, B. (2010), “The hidden risks of risk parity portfolios.” GMO white paper. Jagannathan, R., & Ma, T. (2003), “Risk reduction in large portfolios: Why imposing the wrong constraints helps.” The Journal of Finance, 58(4), 1651-1683. Jorion P. (1986), “Bayes-Stein estimation for portfolio analysis.” Journal of Financial and Quantitative Analysis, 21, pp. 293-305. Leote, R. A. U. L., Lu, X., & Moulin, P. (2012), “Demystifying equity risk-based strategies: A simple alpha plus beta description.” Journal of Portfolio Management, 38, 56-70. Lintner, J. (1975), “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets.” In Stochastic optimization models in finance (pp. 131-155). Academic Press. Lohre, H., Neugebauer, U., & Zimmer, C. (2012), “Diversified risk parity strategies for equity portfolio selection.” Journal of Investing, 21(3), 111. Lopez de Prado, M. (2016), “Building diversified portfolios that outperform out-of-sample.” Journal of Portfolio Management. Maillard, S., Roncalli, T., & Teïletche, J. (2008), “On the properties of equally-weighted risk contributions portfolios.” Available at SSRN 1271972. Maillard, S., Roncalli, T., & Teïletche, J. (2008), “On the properties of equally-weighted risk contributions portfolios.” Available at SSRN 1271972. Markowitz, H. (1952), “Portfolio Selection.” Journal of Finance, 7, pp. 77-91. Merton R.C. (1980), “On estimating the expected return on the market: An exploratory investigation.” Journal of Financial Economics, 8, pp. 323-361. Michaud, R. O. (1989), “The Markowitz optimization enigma: Is ‘optimized’optimal?” Financial Analysts Journal, 45(1), 31-42. Qian, E. (2005), “Risk parity portfolios: Efficient portfolios through true diversification.” Panagora Asset Management. Raffinot, T. (2017), “Hierarchical clustering based asset allocation.” Available at SSRN 2840729. Scherer B. (2007), “Can robust portfolio optimisation help to build better portfolios?” Journal of Asset Management, 7(6), pp. 374-387. Sharpe, W. F. (1964), “Capital asset prices: A theory of market equilibrium under conditions of risk.” The journal of finance, 19(3), 425-442. Tobin, J. (1958), “Liquidity preference as behavior towards risk.” The review of economic studies, 25(2), 65-86. Tütüncü R.H and Koenig M. (2004), “Robust asset allocation.” Annals of Operations Research, 132, pp. 132-157. Windcliff, H., & Boyle, P. P. (2004), “The 1/n pension investment puzzle.” North American Actuarial Journal, 8(3), 32-45. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73322 | - |
| dc.description.abstract | 本研究以台灣發行之各地股票ETF與各類債券ETF作為資產池,改良近期被JP Morgan譽為「必須加入資產配置工具箱」之階層平價方法,創建「改良階層平價方法」,並與歷史上著名資產配置模型,如等權重、最小變異數、風險平價、最多元化投資組合進行績效、風險、權重與喜好資產的比較分析。發現這些以風險為基礎之投資組合,皆傾向選擇「低波動之資產」,也就是此處的債券ETF種類,造成其於包含股票與債券之資產池中無法有很好的風險分散效果。
在這些以風險為基礎的資產配置方法比較部分,本研究改良之階層平價方法無論在股市相對多頭或空頭,皆能打敗原階層平價方法,為學術領域提供一項有效之資產配置模型。而等權重與風險平價投資組合因分別以權重、風險等值概念進行權重配置,而使其權重相較於其他方法,集中在少數資產與單一債券種類之問題較輕微,但其缺乏考量其他資產特性也讓其表現無論在股市相對空頭或多頭期間皆表現不佳。最小變異數與最多元化投資組合,則是所有方法之中較易選擇波動性高之資產,因此其於股市相對多頭期間有較高之投資組合報酬,但投資組合也因此遭受較高波動性。而階層風險平價系列方法則是其中較保守之方法,比其他方法更傾向選擇低波動之資產,但其於股市相對空頭期間獲得比其他方法更高之報酬,證明其資產配置能力。 雖然並沒有一種投資組合方法永遠勝過其他方法,但透過本文分析各方法之差異,我們更能夠對不同資產池之資產特性與景氣循環,視情況選擇適合之資產配置方法,達到更好的投資組合表現。 | zh_TW |
| dc.description.abstract | This study improves Hierarchical Risk Parity method, which JP Morgan said that should be added to asset allocation toolbox, by changing the algorithm of weight calculation. Comparing it with other historical models, including equally-weighted, minimum variance, risk parity, most diversified, hierarchical risk parity, this study finds that these risk-based portfolios tend to choose low-volatility assets, which are bond ETFs. This would make them unable to have a good risk dispersion, even if both stock ETFs and bond ETFs are in the universe.
In the comparison of asset allocation methods, the improved Hierarchical Risk Parity defeat the original one whether the stock market is relative bull or bear. Because equally-weighted and risk parity portfolios are respectively weighted by weight equivalence and risk equivalence, their weights are equally distributed among all the assets. However, the lack of taking other characteristics into consideration also makes poor performance in a bull market. Minimum variance and most diversified portfolios tend to choose the assets with high volatility instead, so they have higher returns and therefore subject to higher volatility. Though the original and the improved hierarchical risk parity portfolios are more conservative, their brilliant asset allocation abilities are proved by the higher returns in a bear market. Although there is no such a portfolio that always outperforms others, by analyzing the differences between the methods, we could choose an appropriate asset allocation model for different asset characteristics or in different economic cycle to achieve better performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:28:23Z (GMT). No. of bitstreams: 1 ntu-108-R06723033-1.pdf: 2404824 bytes, checksum: 81f1178332002501dc08b5c0fd02dee4 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 壹、 緒論 1
一、 研究背景 1 二、 研究動機與目的 4 贰、 文獻回顧 5 一、 資產配置理論與方法之沿革 5 (一) 平均─變異數架構 5 (二) 市值加權投資組合 5 (三) 最小變異數投資組合 6 (四) 等權重投資組合 6 (五) 等風險貢獻投資組合 7 (六) 最多元化投資組合 8 二、 原始與改良階層風險平價投資組合 8 叁、 研究方法 10 一、 ETF標的選擇 10 (一) 標的選擇流程與原因 10 (二) 價值選擇(淨值或市價) 11 (三) 投資標的選擇結果 12 二、 投資組合方法建置 13 (一) 等權重投資組合 14 (二) 最小變異數投資組合 14 (三) 等風險貢獻投資組合 14 (四) 最多元化投資組合 15 (五) 階層風險評價投資組合 15 (六) 改良階層平價投資組合 17 三、 績效、風險與多元性指標 18 (一) 績效與風險指標 18 (二) 多元化指標 19 四、 分析歷史權重與喜好資產 21 肆、 實證結果 22 一、 資料 22 (一) 期間選擇 22 (二) 資料來源 23 (三) 權重調整頻率與限制 23 二、 結果 24 (一) 對數累積報酬率 24 (二) 績效與風險指標 25 (三) 多元化指標 28 (四) 分析歷史權重 30 (五) 分析喜好資產 32 伍、 結論 37 參考文獻 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分群演算法 | zh_TW |
| dc.subject | 指數股票型基金 | zh_TW |
| dc.subject | 投資組合最佳化 | zh_TW |
| dc.subject | 資產配置 | zh_TW |
| dc.subject | 風險平價 | zh_TW |
| dc.subject | 多元化 | zh_TW |
| dc.subject | risk parity | en |
| dc.subject | asset allocation | en |
| dc.subject | diversification | en |
| dc.subject | Exchange Traded Funds(ETF) | en |
| dc.subject | cluster | en |
| dc.title | 台灣ETF投資組合配置之研究-改良後階層風險對等模型之應用 | zh_TW |
| dc.title | Constructing Portfolio of ETFs in Taiwan: An Application of Improved Hierarchical Risk Parity Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林姿婷(Tzu-Ting Lin),張景宏(Ching-Hung Chang) | |
| dc.subject.keyword | 指數股票型基金,投資組合最佳化,資產配置,風險平價,多元化,分群演算法, | zh_TW |
| dc.subject.keyword | Exchange Traded Funds(ETF),asset allocation,diversification,cluster,risk parity, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU201900968 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-06-20 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
