請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73303
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭文芳(Wen-Fang Cheng) | |
dc.contributor.author | Nai-Yun Sun | en |
dc.contributor.author | 孫乃云 | zh_TW |
dc.date.accessioned | 2021-06-17T07:27:23Z | - |
dc.date.available | 2024-08-26 | |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-06-24 | |
dc.identifier.citation | 1.A. Rotte, J.Y. Jin, V. Lemaire, Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy, Ann Oncol, 29 (2018) 71-83.
2.J.E. Smith-Garvin, G.A. Koretzky, M.S. Jordan, T cell activation, Annu Rev Immunol, 27 (2009) 591-619. 3.D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, 12 (2012) 252-264. 4.D.S. Thommen, J. Schreiner, P. Muller, P. Herzig, A. Roller, A. Belousov, P. Umana, P. Pisa, C. Klein, M. Bacac, O.S. Fischer, W. Moersig, S. Savic Prince, V. Levitsky, V. Karanikas, D. Lardinois, A. Zippelius, Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors, Cancer Immunol Res, 3 (2015) 1344-1355. 5.J.R. Webb, K. Milne, B.H. Nelson, PD-1 and CD103 Are Widely Coexpressed on Prognostically Favorable Intraepithelial CD8 T Cells in Human Ovarian Cancer, Cancer Immunol Res, 3 (2015) 926-935. 6.F. Djenidi, J. Adam, A. Goubar, A. Durgeau, G. Meurice, V. de Montpreville, P. Validire, B. Besse, F. Mami-Chouaib, CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients, J Immunol, 194 (2015) 3475-3486. 7. J. Chen, Z. Chen, The effect of immune microenvironment on the progression and prognosis of colorectal cancer, Med Oncol, 31 (2014) 82. 8.J. Matsuzaki, S. Gnjatic, P. Mhawech-Fauceglia, A. Beck, A. Miller, T. Tsuji, C. Eppolito, F. Qian, S. Lele, P. Shrikant, L.J. Old, K. Odunsi, Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer, Proc Natl Acad Sci U S A, 107 (2010) 7875-7880. 9.K. Weintraub, Drug development: Releasing the brakes, Nature, 504 (2013) S6-8. 10.A. Popovic, E.M. Jaffee, N. Zaidi, Emerging strategies for combination checkpoint modulators in cancer immunotherapy, J Clin Invest, 128 (2018) 3209-3218. 11.P.S. Linsley, J.L. Greene, W. Brady, J. Bajorath, J.A. Ledbetter, R. Peach, Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors, Immunity, 1 (1994) 793-801. 12.H. Schneider, J. Downey, A. Smith, B.H. Zinselmeyer, C. Rush, J.M. Brewer, B. Wei, N. Hogg, P. Garside, C.E. Rudd, Reversal of the TCR stop signal by CTLA-4, Science, 313 (2006) 1972-1975. 13.J.G. Egen, J.P. Allison, Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength, Immunity, 16 (2002) 23-35. 14.T. Pentcheva-Hoang, J.G. Egen, K. Wojnoonski, J.P. Allison, B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse, Immunity, 21 (2004) 401-413. 15.F. Pages, M. Ragueneau, R. Rottapel, A. Truneh, J. Nunes, J. Imbert, D. Olive, Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling, Nature, 369 (1994) 327-329. 16.L.P. Kane, P.G. Andres, K.C. Howland, A.K. Abbas, A. Weiss, Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines, Nat Immunol, 2 (2001) 37-44. 17.S.C. Wei, C.R. Duffy, J.P. Allison, Fundamental Mechanisms of Immune Checkpoint Blockade Therapy, Cancer Discov, 8 (2018) 1069-1086. 18.C.A. Chambers, D. Cado, T. Truong, J.P. Allison, Thymocyte development is normal in CTLA-4-deficient mice, Proc Natl Acad Sci U S A, 94 (1997) 9296-9301. 19.P. Waterhouse, J.M. Penninger, E. Timms, A. Wakeham, A. Shahinian, K.P. Lee, C.B. Thompson, H. Griesser, T.W. Mak, Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4, Science, 270 (1995) 985-988. 20.E.A. Tivol, F. Borriello, A.N. Schweitzer, W.P. Lynch, J.A. Bluestone, A.H. Sharpe, Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4, Immunity, 3 (1995) 541-547. 21.R.H. Friedline, D.S. Brown, H. Nguyen, H. Kornfeld, J. Lee, Y. Zhang, M. Appleby, S.D. Der, J. Kang, C.A. Chambers, CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance, J Exp Med, 206 (2009) 421-434. 22.S. Read, R. Greenwald, A. Izcue, N. Robinson, D. Mandelbrot, L. Francisco, A.H. Sharpe, F. Powrie, Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo, J Immunol, 177 (2006) 4376-4383. 23.S. Hori, T. Nomura, S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science, 299 (2003) 1057-1061. 24.J.D. Fontenot, M.A. Gavin, A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nat Immunol, 4 (2003) 330-336. 25.J.A. Hill, M. Feuerer, K. Tash, S. Haxhinasto, J. Perez, R. Melamed, D. Mathis, C. Benoist, Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature, Immunity, 27 (2007) 786-800. 26.M.A. Gavin, J.P. Rasmussen, J.D. Fontenot, V. Vasta, V.C. Manganiello, J.A. Beavo, A.Y. Rudensky, Foxp3-dependent programme of regulatory T-cell differentiation, Nature, 445 (2007) 771-775. 27.E. Corse, J.P. Allison, Cutting edge: CTLA-4 on effector T cells inhibits in trans, J Immunol, 189 (2012) 1123-1127. 28.D.R. Leach, M.F. Krummel, J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade, Science, 271 (1996) 1734-1736. 29.A. van Elsas, A.A. Hurwitz, J.P. Allison, Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation, J Exp Med, 190 (1999) 355-366. 30.F.S. Hodi, S.J. O'Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley, A.J. van den Eertwegh, J. Lutzky, P. Lorigan, J.M. Vaubel, G.P. Linette, D. Hogg, C.H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J.I. Clark, J.D. Wolchok, J.S. Weber, J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, W.J. Urba, Improved survival with ipilimumab in patients with metastatic melanoma, N Engl J Med, 363 (2010) 711-723. 31.C. Robert, L. Thomas, I. Bondarenko, S. O'Day, J. Weber, C. Garbe, C. Lebbe, J.F. Baurain, A. Testori, J.J. Grob, N. Davidson, J. Richards, M. Maio, A. Hauschild, W.H. Miller, Jr., P. Gascon, M. Lotem, K. Harmankaya, R. Ibrahim, S. Francis, T.T. Chen, R. Humphrey, A. Hoos, J.D. Wolchok, Ipilimumab plus dacarbazine for previously untreated metastatic melanoma, N Engl J Med, 364 (2011) 2517-2526. 32.A.M. Eggermont, V. Chiarion-Sileni, J.J. Grob, R. Dummer, J.D. Wolchok, H. Schmidt, O. Hamid, C. Robert, P.A. Ascierto, J.M. Richards, C. Lebbe, V. Ferraresi, M. Smylie, J.S. Weber, M. Maio, C. Konto, A. Hoos, V. de Pril, R.K. Gurunath, G. de Schaetzen, S. Suciu, A. Testori, Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial, Lancet Oncol, 16 (2015) 522-530. 33.Y. Latchman, C.R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A.J. Long, J.A. Brown, R. Nunes, E.A. Greenfield, K. Bourque, V.A. Boussiotis, L.L. Carter, B.M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A.H. Sharpe, G.J. Freeman, PD-L2 is a second ligand for PD-1 and inhibits T cell activation, Nat Immunol, 2 (2001) 261-268. 34.L.M. Francisco, V.H. Salinas, K.E. Brown, V.K. Vanguri, G.J. Freeman, V.K. Kuchroo, A.H. Sharpe, PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, J Exp Med, 206 (2009) 3015-3029. 35.T. Yokosuka, M. Takamatsu, W. Kobayashi-Imanishi, A. Hashimoto-Tane, M. Azuma, T. Saito, Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2, J Exp Med, 209 (2012) 1201-1217. 36.E. Hui, J. Cheung, J. Zhu, X. Su, M.J. Taylor, H.A. Wallweber, D.K. Sasmal, J. Huang, J.M. Kim, I. Mellman, R.D. Vale, T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition, Science, 355 (2017) 1428-1433. 37.S.R. Gordon, R.L. Maute, B.W. Dulken, G. Hutter, B.M. George, M.N. McCracken, R. Gupta, J.M. Tsai, R. Sinha, D. Corey, A.M. Ring, A.J. Connolly, I.L. Weissman, PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity, Nature, 545 (2017) 495-499. 38.H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat Med, 8 (2002) 793-800. 39.C. Blank, I. Brown, A.C. Peterson, M. Spiotto, Y. Iwai, T. Honjo, T.F. Gajewski, PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells, Cancer Res, 64 (2004) 1140-1145. 40.Y. Iwai, M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, N. Minato, Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade, Proc Natl Acad Sci U S A, 99 (2002) 12293-12297. 41.C. Robert, J. Schachter, G.V. Long, A. Arance, J.J. Grob, L. Mortier, A. Daud, M.S. Carlino, C. McNeil, M. Lotem, J. Larkin, P. Lorigan, B. Neyns, C.U. Blank, O. Hamid, C. Mateus, R. Shapira-Frommer, M. Kosh, H. Zhou, N. Ibrahim, S. Ebbinghaus, A. Ribas, K.-. investigators, Pembrolizumab versus Ipilimumab in Advanced Melanoma, N Engl J Med, 372 (2015) 2521-2532. 42.E.B. Garon, N.A. Rizvi, R. Hui, N. Leighl, A.S. Balmanoukian, J.P. Eder, A. Patnaik, C. Aggarwal, M. Gubens, L. Horn, E. Carcereny, M.J. Ahn, E. Felip, J.S. Lee, M.D. Hellmann, O. Hamid, J.W. Goldman, J.C. Soria, M. Dolled-Filhart, R.Z. Rutledge, J. Zhang, J.K. Lunceford, R. Rangwala, G.M. Lubiniecki, C. Roach, K. Emancipator, L. Gandhi, K.-. Investigators, Pembrolizumab for the treatment of non-small-cell lung cancer, N Engl J Med, 372 (2015) 2018-2028. 43.M. Reck, D. Rodriguez-Abreu, A.G. Robinson, R. Hui, T. Csoszi, A. Fulop, M. Gottfried, N. Peled, A. Tafreshi, S. Cuffe, M. O'Brien, S. Rao, K. Hotta, M.A. Leiby, G.M. Lubiniecki, Y. Shentu, R. Rangwala, J.R. Brahmer, K.-. Investigators, Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer, N Engl J Med, 375 (2016) 1823-1833. 44.L.Q.M. Chow, R. Haddad, S. Gupta, A. Mahipal, R. Mehra, M. Tahara, R. Berger, J.P. Eder, B. Burtness, S.H. Lee, B. Keam, H. Kang, K. Muro, J. Weiss, R. Geva, C.C. Lin, H.C. Chung, A. Meister, M. Dolled-Filhart, K. Pathiraja, J.D. Cheng, T.Y. Seiwert, Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort, J Clin Oncol, 34 (2016) 3838-3845. 45.R. Chen, P.L. Zinzani, M.A. Fanale, P. Armand, N.A. Johnson, P. Brice, J. Radford, V. Ribrag, D. Molin, T.P. Vassilakopoulos, A. Tomita, B. von Tresckow, M.A. Shipp, Y. Zhang, A.D. Ricart, A. Balakumaran, C.H. Moskowitz, Keynote, Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma, J Clin Oncol, 35 (2017) 2125-2132. 46.J. Bellmunt, R. de Wit, D.J. Vaughn, Y. Fradet, J.L. Lee, L. Fong, N.J. Vogelzang, M.A. Climent, D.P. Petrylak, T.K. Choueiri, A. Necchi, W. Gerritsen, H. Gurney, D.I. Quinn, S. Culine, C.N. Sternberg, Y. Mai, C.H. Poehlein, R.F. Perini, D.F. Bajorin, K.-. Investigators, Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, N Engl J Med, 376 (2017) 1015-1026. 47.J.S. Weber, S.P. D'Angelo, D. Minor, F.S. Hodi, R. Gutzmer, B. Neyns, C. Hoeller, N.I. Khushalani, W.H. Miller, Jr., C.D. Lao, G.P. Linette, L. Thomas, P. Lorigan, K.F. Grossmann, J.C. Hassel, M. Maio, M. Sznol, P.A. Ascierto, P. Mohr, B. Chmielowski, A. Bryce, I.M. Svane, J.J. Grob, A.M. Krackhardt, C. Horak, A. Lambert, A.S. Yang, J. Larkin, Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial, Lancet Oncol, 16 (2015) 375-384. 48.C. Robert, G.V. Long, B. Brady, C. Dutriaux, M. Maio, L. Mortier, J.C. Hassel, P. Rutkowski, C. McNeil, E. Kalinka-Warzocha, K.J. Savage, M.M. Hernberg, C. Lebbe, J. Charles, C. Mihalcioiu, V. Chiarion-Sileni, C. Mauch, F. Cognetti, A. Arance, H. Schmidt, D. Schadendorf, H. Gogas, L. Lundgren-Eriksson, C. Horak, B. Sharkey, I.M. Waxman, V. Atkinson, P.A. Ascierto, Nivolumab in previously untreated melanoma without BRAF mutation, N Engl J Med, 372 (2015) 320-330. 49.H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q. Chow, E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhaufl, O. Arrieta, M.A. Burgio, J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. Rudin, N. Rizvi, L. Crino, G.R. Blumenschein, Jr., S.J. Antonia, C. Dorange, C.T. Harbison, F. Graf Finckenstein, J.R. Brahmer, Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer, N Engl J Med, 373 (2015) 1627-1639. 50.J. Brahmer, K.L. Reckamp, P. Baas, L. Crino, W.E. Eberhardt, E. Poddubskaya, S. Antonia, A. Pluzanski, E.E. Vokes, E. Holgado, D. Waterhouse, N. Ready, J. Gainor, O. Aren Frontera, L. Havel, M. Steins, M.C. Garassino, J.G. Aerts, M. Domine, L. Paz-Ares, M. Reck, C. Baudelet, C.T. Harbison, B. Lestini, D.R. Spigel, Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer, N Engl J Med, 373 (2015) 123-135. 51.R.L. Ferris, G. Blumenschein, Jr., J. Fayette, J. Guigay, A.D. Colevas, L. Licitra, K. Harrington, S. Kasper, E.E. Vokes, C. Even, F. Worden, N.F. Saba, L.C. Iglesias Docampo, R. Haddad, T. Rordorf, N. Kiyota, M. Tahara, M. Monga, M. Lynch, W.J. Geese, J. Kopit, J.W. Shaw, M.L. Gillison, Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, N Engl J Med, 375 (2016) 1856-1867. 52.S.M. Ansell, A.M. Lesokhin, I. Borrello, A. Halwani, E.C. Scott, M. Gutierrez, S.J. Schuster, M.M. Millenson, D. Cattry, G.J. Freeman, S.J. Rodig, B. Chapuy, A.H. Ligon, L. Zhu, J.F. Grosso, S.Y. Kim, J.M. Timmerman, M.A. Shipp, P. Armand, PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma, N Engl J Med, 372 (2015) 311-319. 53.A. Younes, A. Santoro, M. Shipp, P.L. Zinzani, J.M. Timmerman, S. Ansell, P. Armand, M. Fanale, V. Ratanatharathorn, J. Kuruvilla, J.B. Cohen, G. Collins, K.J. Savage, M. Trneny, K. Kato, B. Farsaci, S.M. Parker, S. Rodig, M.G. Roemer, A.H. Ligon, A. Engert, Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial, Lancet Oncol, 17 (2016) 1283-1294. 54.R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas, S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, T.K. Choueiri, H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T.C. Gauler, T. Ueda, Y. Tomita, F.A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J.S. Simon, L.A. Xu, I.M. Waxman, P. Sharma, I. CheckMate, Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma, N Engl J Med, 373 (2015) 1803-1813. 55.P. Sharma, M. Retz, A. Siefker-Radtke, A. Baron, A. Necchi, J. Bedke, E.R. Plimack, D. Vaena, M.O. Grimm, S. Bracarda, J.A. Arranz, S. Pal, C. Ohyama, A. Saci, X. Qu, A. Lambert, S. Krishnan, A. Azrilevich, M.D. Galsky, Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial, Lancet Oncol, 18 (2017) 312-322. 56.S. Peters, S. Gettinger, M.L. Johnson, P.A. Janne, M.C. Garassino, D. Christoph, C.K. Toh, N.A. Rizvi, J.E. Chaft, E. Carcereny Costa, J.D. Patel, L.Q.M. Chow, M. Koczywas, C. Ho, M. Fruh, M. van den Heuvel, J. Rothenstein, M. Reck, L. Paz-Ares, F.A. Shepherd, T. Kurata, Z. Li, J. Qiu, M. Kowanetz, S. Mocci, G. Shankar, A. Sandler, E. Felip, Phase II Trial of Atezolizumab As First-Line or Subsequent Therapy for Patients With Programmed Death-Ligand 1-Selected Advanced Non-Small-Cell Lung Cancer (BIRCH), J Clin Oncol, 35 (2017) 2781-2789. 57.A.V. Balar, M.D. Galsky, J.E. Rosenberg, T. Powles, D.P. Petrylak, J. Bellmunt, Y. Loriot, A. Necchi, J. Hoffman-Censits, J.L. Perez-Gracia, N.A. Dawson, M.S. van der Heijden, R. Dreicer, S. Srinivas, M.M. Retz, R.W. Joseph, A. Drakaki, U.N. Vaishampayan, S.S. Sridhar, D.I. Quinn, I. Duran, D.R. Shaffer, B.J. Eigl, P.D. Grivas, E.Y. Yu, S. Li, E.E. Kadel, 3rd, Z. Boyd, R. Bourgon, P.S. Hegde, S. Mariathasan, A. Thastrom, O.O. Abidoye, G.D. Fine, D.F. Bajorin, I.M.S. Group, Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial, Lancet, 389 (2017) 67-76. 58.J.E. Rosenberg, J. Hoffman-Censits, T. Powles, M.S. van der Heijden, A.V. Balar, A. Necchi, N. Dawson, P.H. O'Donnell, A. Balmanoukian, Y. Loriot, S. Srinivas, M.M. Retz, P. Grivas, R.W. Joseph, M.D. Galsky, M.T. Fleming, D.P. Petrylak, J.L. Perez-Gracia, H.A. Burris, D. Castellano, C. Canil, J. Bellmunt, D. Bajorin, D. Nickles, R. Bourgon, G.M. Frampton, N. Cui, S. Mariathasan, O. Abidoye, G.D. Fine, R. Dreicer, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet, 387 (2016) 1909-1920. 59.L. Fehrenbacher, A. Spira, M. Ballinger, M. Kowanetz, J. Vansteenkiste, J. Mazieres, K. Park, D. Smith, A. Artal-Cortes, C. Lewanski, F. Braiteh, D. Waterkamp, P. He, W. Zou, D.S. Chen, J. Yi, A. Sandler, A. Rittmeyer, P.S. Group, Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial, Lancet, 387 (2016) 1837-1846. 60.A. Rittmeyer, F. Barlesi, D. Waterkamp, K. Park, F. Ciardiello, J. von Pawel, S.M. Gadgeel, T. Hida, D.M. Kowalski, M.C. Dols, D.L. Cortinovis, J. Leach, J. Polikoff, C. Barrios, F. Kabbinavar, O.A. Frontera, F. De Marinis, H. Turna, J.S. Lee, M. Ballinger, M. Kowanetz, P. He, D.S. Chen, A. Sandler, D.R. Gandara, O.A.K.S. Group, Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial, Lancet, 389 (2017) 255-265. 61.H.L. Kaufman, J. Russell, O. Hamid, S. Bhatia, P. Terheyden, S.P. D'Angelo, K.C. Shih, C. Lebbe, G.P. Linette, M. Milella, I. Brownell, K.D. Lewis, J.H. Lorch, K. Chin, L. Mahnke, A. von Heydebreck, J.M. Cuillerot, P. Nghiem, Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial, Lancet Oncol, 17 (2016) 1374-1385. 62.A.B. Apolo, J.R. Infante, A. Balmanoukian, M.R. Patel, D. Wang, K. Kelly, A.E. Mega, C.D. Britten, A. Ravaud, A.C. Mita, H. Safran, T.E. Stinchcombe, M. Srdanov, A.B. Gelb, M. Schlichting, K. Chin, J.L. Gulley, Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study, J Clin Oncol, 35 (2017) 2117-2124. 63.C. Massard, M.S. Gordon, S. Sharma, S. Rafii, Z.A. Wainberg, J. Luke, T.J. Curiel, G. Colon-Otero, O. Hamid, R.E. Sanborn, P.H. O'Donnell, A. Drakaki, W. Tan, J.F. Kurland, M.C. Rebelatto, X. Jin, J.A. Blake-Haskins, A. Gupta, N.H. Segal, Safety and Efficacy of Durvalumab (MEDI4736), an Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer, J Clin Oncol, 34 (2016) 3119-3125. 64.T. Powles, P.H. O'Donnell, C. Massard, H.T. Arkenau, T.W. Friedlander, C.J. Hoimes, J.L. Lee, M. Ong, S.S. Sridhar, N.J. Vogelzang, M.N. Fishman, J. Zhang, S. Srinivas, J. Parikh, J. Antal, X. Jin, A.K. Gupta, Y. Ben, N.M. Hahn, Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study, JAMA Oncol, 3 (2017) e172411. 65.M.V. Goldberg, C.G. Drake, LAG-3 in Cancer Immunotherapy, Curr Top Microbiol Immunol, 344 (2011) 269-278. 66.B. Huard, R. Mastrangeli, P. Prigent, D. Bruniquel, S. Donini, N. El-Tayar, B. Maigret, M. Dreano, F. Triebel, Characterization of the major histocompatibility complex class II binding site on LAG-3 protein, Proc Natl Acad Sci U S A, 94 (1997) 5744-5749. 67.F. Triebel, S. Jitsukawa, E. Baixeras, S. Roman-Roman, C. Genevee, E. Viegas-Pequignot, T. Hercend, LAG-3, a novel lymphocyte activation gene closely related to CD4, J Exp Med, 171 (1990) 1393-1405. 68.B. Huard, P. Prigent, M. Tournier, D. Bruniquel, F. Triebel, CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins, Eur J Immunol, 25 (1995) 2718-2721. 69.J.F. Grosso, C.C. Kelleher, T.J. Harris, C.H. Maris, E.L. Hipkiss, A. De Marzo, R. Anders, G. Netto, D. Getnet, T.C. Bruno, M.V. Goldberg, D.M. Pardoll, C.G. Drake, LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems, J Clin Invest, 117 (2007) 3383-3392. 70.J.F. Grosso, M.V. Goldberg, D. Getnet, T.C. Bruno, H.R. Yen, K.J. Pyle, E. Hipkiss, D.A. Vignali, D.M. Pardoll, C.G. Drake, Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells, J Immunol, 182 (2009) 6659-6669. 71.S.R. Woo, M.E. Turnis, M.V. Goldberg, J. Bankoti, M. Selby, C.J. Nirschl, M.L. Bettini, D.M. Gravano, P. Vogel, C.L. Liu, S. Tangsombatvisit, J.F. Grosso, G. Netto, M.P. Smeltzer, A. Chaux, P.J. Utz, C.J. Workman, D.M. Pardoll, A.J. Korman, C.G. Drake, D.A. Vignali, Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape, Cancer Res, 72 (2012) 917-927. 72.P.A. Ascierto, G.A. McArthur, Checkpoint inhibitors in melanoma and early phase development in solid tumors: what's the future?, J Transl Med, 15 (2017) 173. 73.A.C. Anderson, N. Joller, V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation, Immunity, 44 (2016) 989-1004. 74.C. Zhu, A.C. Anderson, A. Schubart, H. Xiong, J. Imitola, S.J. Khoury, X.X. Zheng, T.B. Strom, V.K. Kuchroo, The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity, Nat Immunol, 6 (2005) 1245-1252. 75.A.C. Anderson, D.E. Anderson, L. Bregoli, W.D. Hastings, N. Kassam, C. Lei, R. Chandwaskar, J. Karman, E.W. Su, M. Hirashima, J.N. Bruce, L.P. Kane, V.K. Kuchroo, D.A. Hafler, Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells, Science, 318 (2007) 1141-1143. 76.S.F. Ngiow, B. von Scheidt, H. Akiba, H. Yagita, M.W. Teng, M.J. Smyth, Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors, Cancer Res, 71 (2011) 3540-3551. 77.J. Fourcade, Z. Sun, M. Benallaoua, P. Guillaume, I.F. Luescher, C. Sander, J.M. Kirkwood, V. Kuchroo, H.M. Zarour, Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients, J Exp Med, 207 (2010) 2175-2186. 78.S. Koyama, E.A. Akbay, Y.Y. Li, G.S. Herter-Sprie, K.A. Buczkowski, W.G. Richards, L. Gandhi, A.J. Redig, S.J. Rodig, H. Asahina, R.E. Jones, M.M. Kulkarni, M. Kuraguchi, S. Palakurthi, P.E. Fecci, B.E. Johnson, P.A. Janne, J.A. Engelman, S.P. Gangadharan, D.B. Costa, G.J. Freeman, R. Bueno, F.S. Hodi, G. Dranoff, K.K. Wong, P.S. Hammerman, Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints, Nat Commun, 7 (2016) 10501. 79.S.D. Levin, D.W. Taft, C.S. Brandt, C. Bucher, E.D. Howard, E.M. Chadwick, J. Johnston, A. Hammond, K. Bontadelli, D. Ardourel, L. Hebb, A. Wolf, T.R. Bukowski, M.W. Rixon, J.L. Kuijper, C.D. Ostrander, J.W. West, J. Bilsborough, B. Fox, Z. Gao, W. Xu, F. Ramsdell, B.R. Blazar, K.E. Lewis, Vstm3 is a member of the CD28 family and an important modulator of T-cell function, Eur J Immunol, 41 (2011) 902-915. 80.E. Lozano, M. Dominguez-Villar, V. Kuchroo, D.A. Hafler, The TIGIT/CD226 axis regulates human T cell function, J Immunol, 188 (2012) 3869-3875. 81.S. Kurtulus, K. Sakuishi, S.F. Ngiow, N. Joller, D.J. Tan, M.W. Teng, M.J. Smyth, V.K. Kuchroo, A.C. Anderson, TIGIT predominantly regulates the immune response via regulatory T cells, J Clin Invest, 125 (2015) 4053-4062. 82.R.J. Johnston, L. Comps-Agrar, J. Hackney, X. Yu, M. Huseni, Y. Yang, S. Park, V. Javinal, H. Chiu, B. Irving, D.L. Eaton, J.L. Grogan, The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function, Cancer Cell, 26 (2014) 923-937. 83.K.M. Murphy, C.A. Nelson, J.R. Sedy, Balancing co-stimulation and inhibition with BTLA and HVEM, Nat Rev Immunol, 6 (2006) 671-681. 84.C. Pasero, D. Olive, Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity, Immunol Lett, 151 (2013) 71-75. 85.N. Watanabe, M. Gavrieli, J.R. Sedy, J. Yang, F. Fallarino, S.K. Loftin, M.A. Hurchla, N. Zimmerman, J. Sim, X. Zang, T.L. Murphy, J.H. Russell, J.P. Allison, K.M. Murphy, BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1, Nat Immunol, 4 (2003) 670-679. 86.J.R. Sedy, M. Gavrieli, K.G. Potter, M.A. Hurchla, R.C. Lindsley, K. Hildner, S. Scheu, K. Pfeffer, C.F. Ware, T.L. Murphy, K.M. Murphy, B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator, Nat Immunol, 6 (2005) 90-98. 87.M.O. Lasaro, M. Sazanovich, W. Giles-Davis, P. Mrass, R.M. Bunte, D.A. Sewell, S.F. Hussain, Y.X. Fu, W. Weninger, Y. Paterson, H.C. Ertl, Active immunotherapy combined with blockade of a coinhibitory pathway achieves regression of large tumor masses in cancer-prone mice, Mol Ther, 19 (2011) 1727-1736. 88.G.V. Masucci, A. Cesano, R. Hawtin, S. Janetzki, J. Zhang, I. Kirsch, K.K. Dobbin, J. Alvarez, P.B. Robbins, S.R. Selvan, H.Z. Streicher, L.H. Butterfield, M. Thurin, Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation, J Immunother Cancer, 4 (2016) 76. 89.K.K. Dobbin, A. Cesano, J. Alvarez, R. Hawtin, S. Janetzki, I. Kirsch, G.V. Masucci, P.B. Robbins, S.R. Selvan, H.Z. Streicher, J. Zhang, L.H. Butterfield, M. Thurin, Validation of biomarkers to predict response to immunotherapy in cancer: Volume II - clinical validation and regulatory considerations, J Immunother Cancer, 4 (2016) 77. 90.R.M. Chabanon, M. Pedrero, C. Lefebvre, A. Marabelle, J.C. Soria, S. Postel-Vinay, Mutational Landscape and Sensitivity to Immune Checkpoint Blockers, Clin Cancer Res, 22 (2016) 4309-4321. 91.P. Sharma, S. Hu-Lieskovan, J.A. Wargo, A. Ribas, Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, 168 (2017) 707-723. 92.W. Peng, J.Q. Chen, C. Liu, S. Malu, C. Creasy, M.T. Tetzlaff, C. Xu, J.A. McKenzie, C. Zhang, X. Liang, L.J. Williams, W. Deng, G. Chen, R. Mbofung, A.J. Lazar, C.A. Torres-Cabala, Z.A. Cooper, P.L. Chen, T.N. Tieu, S. Spranger, X. Yu, C. Bernatchez, M.A. Forget, C. Haymaker, R. Amaria, J.L. McQuade, I.C. Glitza, T. Cascone, H.S. Li, L.N. Kwong, T.P. Heffernan, J. Hu, R.L. Bassett, Jr., M.W. Bosenberg, S.E. Woodman, W.W. Overwijk, G. Lizee, J. Roszik, T.F. Gajewski, J.A. Wargo, J.E. Gershenwald, L. Radvanyi, M.A. Davies, P. Hwu, Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy, Cancer Discov, 6 (2016) 202-216. 93.J. Gao, L.Z. Shi, H. Zhao, J. Chen, L. Xiong, Q. He, T. Chen, J. Roszik, C. Bernatchez, S.E. Woodman, P.L. Chen, P. Hwu, J.P. Allison, A. Futreal, J.A. Wargo, P. Sharma, Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy, Cell, 167 (2016) 397-404 e399. 94.M.R. Green, S. Monti, S.J. Rodig, P. Juszczynski, T. Currie, E. O'Donnell, B. Chapuy, K. Takeyama, D. Neuberg, T.R. Golub, J.L. Kutok, M.A. Shipp, Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma, Blood, 116 (2010) 3268-3277. 95.J.M. Zaretsky, A. Garcia-Diaz, D.S. Shin, H. Escuin-Ordinas, W. Hugo, S. Hu-Lieskovan, D.Y. Torrejon, G. Abril-Rodriguez, S. Sandoval, L. Barthly, J. Saco, B. Homet Moreno, R. Mezzadra, B. Chmielowski, K. Ruchalski, I.P. Shintaku, P.J. Sanchez, C. Puig-Saus, G. Cherry, E. Seja, X. Kong, J. Pang, B. Berent-Maoz, B. Comin-Anduix, T.G. Graeber, P.C. Tumeh, T.N. Schumacher, R.S. Lo, A. Ribas, Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma, N Engl J Med, 375 (2016) 819-829. 96.B. Yang, J. Jeang, A. Yang, T.C. Wu, C.F. Hung, DNA vaccine for cancer immunotherapy, Hum Vaccin Immunother, 10 (2014) 3153-3164. 97.R.J. Anderson, J. Schneider, Plasmid DNA and viral vector-based vaccines for the treatment of cancer, Vaccine, 25 Suppl 2 (2007) B24-34. 98.J.B. Ulmer, G.R. Otten, Priming of CTL responses by DNA vaccines: direct transfection of antigen presenting cells versus cross-priming, Dev Biol (Basel), 104 (2000) 9-14. 99.M.A. Liu, J.B. Ulmer, Human clinical trials of plasmid DNA vaccines, Adv Genet, 55 (2005) 25-40. 100.K. Kobiyama, N. Jounai, T. Aoshi, M. Tozuka, F. Takeshita, C. Coban, K.J. Ishii, Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination, Vaccines (Basel), 1 (2013) 278-292. 101.K. Hoebe, Z. Jiang, K. Tabeta, X. Du, P. Georgel, K. Crozat, B. Beutler, Genetic analysis of innate immunity, Adv Immunol, 91 (2006) 175-226. 102.C.J. Desmet, K.J. Ishii, Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination, Nat Rev Immunol, 12 (2012) 479-491. 103.C. Trimble, C.T. Lin, C.F. Hung, S. Pai, J. Juang, L. He, M. Gillison, D. Pardoll, L. Wu, T.C. Wu, Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe, Vaccine, 21 (2003) 4036-4042. 104.G. Ahlen, J. Soderholm, T. Tjelle, R. Kjeken, L. Frelin, U. Hoglund, P. Blomberg, M. Fons, I. Mathiesen, M. Sallberg, In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells, J Immunol, 179 (2007) 4741-4753. 105.J. Liu, R. Kjeken, I. Mathiesen, D.H. Barouch, Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation, J Virol, 82 (2008) 5643-5649. 106.G. Widera, M. Austin, D. Rabussay, C. Goldbeck, S.W. Barnett, M. Chen, L. Leung, G.R. Otten, K. Thudium, M.J. Selby, J.B. Ulmer, Increased DNA vaccine delivery and immunogenicity by electroporation in vivo, J Immunol, 164 (2000) 4635-4640. 107.S. Tollefsen, T. Tjelle, J. Schneider, M. Harboe, H. Wiker, G. Hewinson, K. Huygen, I. Mathiesen, Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation, Vaccine, 20 (2002) 3370-3378. 108.W.F. Cheng, C.F. Hung, C.Y. Chai, K.F. Hsu, L. He, M. Ling, T.C. Wu, Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen, J Clin Invest, 108 (2001) 669-678. 109.C.-Y. Hsieh, C.-A. Chen, C.-Y. Huang, M.-C. Chang, C.-N. Lee, Y.-N. Su, W.-F. Cheng, IL-6-Encoding Tumor Antigen Generates Potent Cancer Immunotherapy Through Antigen Processing and Anti-apoptotic Pathways, Molecular Therapy, 15 (2007) 1890-1897. 110.C.-A. Chen, C.-M. Ho, M.-C. Chang, W.-Z. Sun, Y.-L. Chen, Y.-C. Chiang, M.-H. Syu, C.-Y. Hsieh, W.-F. Cheng, Metronomic Chemotherapy Enhances Antitumor Effects of Cancer Vaccine by Depleting Regulatory T Lymphocytes and Inhibiting Tumor Angiogenesis, Molecular Therapy, | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73303 | - |
dc.description.abstract | 本論文旨在研究抗原特異DNA疫苗合併阻斷PD-1或CTLA-4免疫檢查點之抗癌效果及其可能的作用機轉。利用帶有人類乳突病毒16型E6和E7抗原之鼷鼠同種腫瘤移植模式,探討anti-CTLA-4或anti-PD-1抗體是否會增強結締組織生長因子結合E7的嵌合DNA疫苗所誘發之抗原特異的抗癌效果及免疫反應以及可能的機轉。首先,anti-PD-1或anti-CTLA-4抗體合併E7抗原特異DNA疫苗的治療方式相較於單獨使用E7抗原特異之DNA疫苗治療,可以增加鼷鼠體內更強之anti-E7抗體、E7抗原特異之細胞毒性CD8 T淋巴球的數目及其細胞毒殺活性等抗原特異免疫力,以及抗癌效果。此外,在anti-PD-1或anti-CTLA-4抗體合併E7抗原特異DNA疫苗的治療下,鼷鼠體內全身性及腫瘤內的調節性T細胞數目都較單獨使用DNA疫苗的治療更低。更進一步的研究顯示anti-PD-1或anti-CTLA-4抗體合併E7抗原特異DNA疫苗的治療下,鼷鼠腫瘤內的樹突細胞之成熟狀態及其活化E7抗原特異之細胞毒性CD8 T細胞的能力都較單獨使用DNA疫苗的治療更強。總而言之,阻斷免疫檢查點的治療方式可以藉由克服腫瘤微環境內的免疫抑制狀態,以達到增強抗原特異DNA疫苗的抗原特異性之抗腫瘤免疫反應及抗癌效果。抗原特異性的免疫治療合併免疫檢查點的阻斷可以在臨床癌症治療上提供嶄新的治療策略。 | zh_TW |
dc.description.abstract | I determined the antitumor effects and possible mechanisms of an antigen-specific DNA vaccine combined with PD-1 or CTLA-4 blockade. Using the HPV16 E6/E7+ syngeneic mouse tumor model, we investigated whether anti-CTLA-4 antibody (Ab) or anti-PD-1 Ab increases the antigen-specific antitumor effects and immune response induced by CTGF/E7 chimeric DNA vaccine and the possible mechanisms. Anti-PD-1 Ab or anti-CTLA-4 Ab combined with E7-specific DNA vaccine generated more potent antigen-specific immunity, including anti-E7 Abs and the number and cytotoxic activity of E7-specific cytotoxic CD8+ T lymphocytes, and antitumor effects than E7-specific DNA vaccine alone. In addition, the number of systemic and intratumoral Tregs was lower with the anti-PD-1 or anti-CTLA-4 Ab and E7-specific DNA vaccine. Furthermore, anti-PD-1 and anti-CTLA-4 Abs could enhance the maturation and abilities of intratumoral DCs to activate E7-specific cytotoxic CD8+ T cells. I conclude that immune checkpoint blockade could overcome the immunosuppressive status of the tumor microenvironment to enhance the antigen-specific immunity and antitumor effects generated by an antigen-specific DNA vaccine. Antigen-specific immunotherapy combined with immune checkpoint blockade can be a novel strategy in clinical cancer therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:27:23Z (GMT). No. of bitstreams: 1 ntu-108-D01453003-1.pdf: 5998672 bytes, checksum: 98f0dd48c0944675e42828d6f36ef3d8 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝…………………………………………………………. ………………………......i
中文摘要………………………………………………………………………………...ii Abstract…………………………………………………………………………………iii Contents…………………………………………………………………………………iv List of Figures…………………………………………………………………………...ix Chapter 1: Background Information…………………………………………………......1 1.1. Regulation of Antitumor Immune Responses.....................................................1 1.2. Immune Checkpoint Blockade in Cancer Immunotherapy……………………2 1.3. Antigen-Specific DNA vaccines in Cancer Immunotherapy………………….7 1.4. Aims of the Study…………………………………………………………….10 Chapter 2: Antigen-Specific Antitumor Effects and Immune Responses Induced by DNA Vaccine Combined with Immune Checkpoint Blockade…………………...12 2.1. Introduction…………………………………………………………………..12 2.2. Materials and Methods……………………………………………………….14 2.2.1. Cell lines……………………………………………………………....15 2.2.2. Preparation of DNA vaccine…………………………………………..15 2.2.3. Mice…………………………………………………………………...15 2.2.4. Administration of immune checkpoint inhibitors……………………..16 2.2.5. In vivo tumor treatment………………………………………………..16 2.2.6. Intracellular IFN-γ staining and MHC I-restricted E7 peptide H-2Db tetramer staining analyzed by flow cytometry………………………………17 2.2.7. Isolation of tumor-infiltrating lymphocytes (TILs)…………………...17 2.2.8. Detection of CD4+ T lymphocytes, CD8+ T lymphocytes, IFN-γ-secreting antigen-specific CD8+ cytotoxic T lymphocytes, and antigen-specific CD8+ cytotoxic T lymphocytes from TILs………………...18 2.2.9. In vivo activation markers of tumor-infiltrating CD4+ or CD8+T cells.18 2.2.10. Enzyme-linked immune-absorbent assay (ELISA) for anti-E7 Ab….19 2.2.11. In vitro tumor killing activities………………………………………19 2.2.12. Histology…………………………………………………………….20 2.2.13. Cell staining and flow cytometric analysis…………………………..20 2.2.14. Statistical analysis…………………………………………………...20 2.3. Results……………………………………………………………………..…21 2.3.1. Immune checkpoint blockades enhanced the antitumor effects of E7-specific chimeric DNA vaccine………………………………………….21 2.3.2. Immune checkpoint blockades could also enhance the antitumor effects of MSLN-specific chimeric DNA vaccine…………………………………..22 2.3.3. Immune checkpoint blockades enhanced the antigen-specific CD8+ T cell systemic and local immune responses generated by antigen-specific chimeric DNA vaccine………………………………………………………23 2.3.4. Immune checkpoint blockades could enhance the numbers of antigen-specific CD8+ TILs generated by antigen-specific chimeric DNA vaccine………………………………………………………………………25 2.3.5. DNA vaccine combined with anti-CTLA-4 or anti-PD-1 Abs could enhance the expression of Ki-67 activation marker on the T lymphocytes of TILs……………………………………………………………………….…26 2.3.6. In vitro and ex vivo antigen-specific CD8+ cytotoxic T cells treated with anti-CTLA-4 or anti-PD-1 Ab have enhanced tumor killing activities…...…26 2.3.7. Combination of DNA vaccine with immune checkpoint blockades does not induce significant changes of histopathology and body weight in mice..27 2.3.8. Both PD-1 and CTLA-4 are highly expressed on antigen-specific CD8+ T cells of splenocytes and TILs…………………………………………...…28 Chapter 3: Immune Checkpoint Blockade Combined with the DNA Vaccine Generate More Potent Antitumor T Cell Responses through Suppressing Regulatory T Cells……………………………………………………………..………………...29 3.1. Introduction………………………………………………………………......29 3.2. Materials and Methods……………………………………………………….31 3.2.1. Detection of Tregs and various surface markers of Tregs from splenocytes and TILs………………………………………………………..31 3.2.2. Immunofluorescent staining of Tregs within the tumors……………..32 3.2.3. Statistical analysis…………………………………………………….33 3.3. Results……………………………………………………………………..…33 3.3.1. Combination of DNA vaccine with immune checkpoint blockades decreases the frequencies of Tregs in splenocytes and tumors in mice by reducing CTLA-4 expression of splenocytes and TILs……………………..33 3.3.2. Both PD-1 and CTLA-4 are highly expressed on Tregs of splenocytes and TILs………………………………………………………………......…35 Chapter 4: Immune Checkpoint Blockade Combined with the DNA Vaccine Generate More Potent Antitumor T Cell Responses through Modulating Dendritic Cells……………………………………………………………………………….36 4.1. Introduction………………………………………………………………......36 4.2. Materials and Methods……………………………………………………….37 4.2.1. In vivo maturation status of DCs…………………………………...…37 4.2.2. Activation of antigen-specific CD8+ cytotoxic T cells by DCs from TILs………………………………………………………………………….37 4.2.3. Immunofluorescent staining of DCs within the tumors………………38 4.2.4. Cell staining and flow cytometric analysis…………………………...38 4.2.5. Maturation status of BMM-derived DCs treated with anti-PD-1 or anti-CTLA-4 Ab………………………………………………………..……39 4.2.6. Antigen presenting and processing abilities of the BMM-derived DCs treated with anti-CTLA-4 Ab by flow cytometric analysis………………….40 4.2.7. Statistical analysis…………………………………………………….41 4.3. Results……………………………………………………………………..…41 4.3.1. Anti-CTLA-4 and anti-PD-1 Abs enhance the maturation of DCs in LNs and tumors in vivo…………………………………………………...…41 4.3.2. Anti-CTLA-4 or anti-PD-1 Ab enhances the activation of antigen-specific cytotoxic CD8+ T cells from tumor-infiltrating DCs………42 4.3.3. Higher percentage of immature BMM-derived DCs express PD-1 and PD-L1 than mature BMM-derived DCs…………………………….……….43 4.3.4. Higher percentages of immature DCs express PD-1 and PD-L1 molecules than mature DCs in TILs…………………………………………44 4.3.5. PD-L1 is highly expressed on TC-1 tumor cells……………………...44 4.3.6. Anti-PD-1 Ab enhances the maturation of BMM-derived DCs by upregulating CD80/86 and MHC I molecules………………………………44 4.3.7. Anti-CTLA-4 Ab does not induce the maturation, antigen-processing, and antigen-presenting activities of BMM-derived DCs……………………45 Chapter 5: Discussions…………………………………………………………...…….47 Chapter 6: Conclusions and Future Prospectives……………………………...……….51 Figures………………………………………………………………………………….53 References………………………………………………………………………...........82 Appendices………………………………………………………………………..…..114 | |
dc.language.iso | en | |
dc.title | 免疫檢查點阻斷可增強抗原特異DNA疫苗所誘發的抗癌效果及免疫 | zh_TW |
dc.title | Antitumor Effect and Immunity Generated by Antigen-Specific DNA Vaccine Are Enhanced by Immune Checkpoint Blockade | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 葉坤輝(Kun-Huei Yeh),許駿(Chiun Hsu),何志明(Chih-Ming Ho),劉士任(Shih-Jen Liu) | |
dc.subject.keyword | 抗原特異DNA疫苗,Anti-PD-1抗體,Anti-CTLA-4抗體,樹突細胞,調節性T細胞, | zh_TW |
dc.subject.keyword | Antigen-specific DNA vaccine,Anti-PD-1 Ab,Anti-CTLA-4 Ab,Dendritic cell,Regulatory T cell, | en |
dc.relation.page | 129 | |
dc.identifier.doi | 10.6342/NTU201900993 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-06-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腫瘤醫學研究所 | zh_TW |
顯示於系所單位: | 腫瘤醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。