Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹(Ru-Shi Liu)
dc.contributor.authorChih-Sheng Huangen
dc.contributor.author黃志盛zh_TW
dc.date.accessioned2021-06-17T07:27:20Z-
dc.date.available2022-07-10
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-06-24
dc.identifier.citation[1] Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
[2] Nagaura, T. Lithium Ion Rechargeable Battery. Prog. Batteries Solar Cells 1990, 9, 209.
[3] Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z. Rechargeable Li-CO2 Batteries with Carbon Nanotubes as Air Cathodes. Chem. Commun. 2015, 51, 14636-14639.
[4] Song, J.; Wang, Y.; Wan, C. C. Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries. J. Power Sources 1999, 77, 183-197.
[5] Wang, L.; Zhang, Y.; Liu, Z.; Guo, L.; Peng, Z. Understanding Oxygen Electrochemistry in Aprotic LiO2 Batteries. Green Energy Environ. 2017, 2, 186-203.
[6] Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent Advances in Understanding Li-CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 1-126.
[7] Semkow, K. W.; Sammells, A. F. A Lithium Oxygen Secondary Battery. J. Electrochem. Soc. 1987, 134, 2084.
[8] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390-1393.
[9] Yi, J.; Guo, S.; He, P.; Zhou, H. Status and Prospects of Polymer Electrolytes for Solid-state Li-O2 (Air) Batteries. Energy Environ. Sci. 2017, 10, 860-884.
[10] Lim, H.-D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction Chemistry in Rechargeable Li-O2 Batteries. Chem. Soc. Rev. 2017, 46, 2873-2888.
[11] Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Flexible Zn-and Li-air Batteries: Recent Advances, Challenges, and Future Perspectives. Energy Environ. Sci. 2017, 10, 2056-2080.
[12] Xu, S.; Das, S. K.; Archer, L. A. The Li-CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656.
[13] Németh, K.; Srajer, G. CO2/Oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-air Type Rechargeable Batteries. RSC Adv. 2014, 4, 1879-1885.
[14] Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J. Mo2C/CNT: An Efficient Catalyst for Rechargeable Li-CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
[15] Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.-j.; Zhou, H. A Reversible Lithium-CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972-978.
[16] Lu, Y.-C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy Environ. Sci. 2013, 6, 750-768.
[17] Yoshimatsu, I.; Hirai, T.; Yamaki, J. i. Lithium Electrode Morphology During Cycling in Lithium Cells. J. Electrochem. Soc. 1988, 135, 2422-2427.
[18] McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents’ Critical Role in Nonaqueous Lithium-oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161-1166.
[19] Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 2011, 159, R1-R30.
[20] Wagner, F. T.; Lakshmanan, B.; Mathias, M. F. Electrochemistry and the Future of the Automobile. J. Phys. Chem. Lett. 2010, 1, 2204-2219.
[21] Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. Flexible Lithium-CO2 Battery with Ultrahigh Capacity and Stable Cycling. Energy Environ. Sci. 2018, 11, 3231-3237.
[22] Hu, Y.; Wu, X.; Hu, G.; Fan, Q. Analysis of Lithium Iron Phosphate Battery Damage. International Symposium on Material, Energy and Environment Engineering. Atlantis Press, 2015.
[23] Wen, Z.; Shen, C.; Lu, Y. Air Electrode for the Lithium-air Batteries: Materials and Structure Designs. ChemPlusChem 2015, 80, 270-287.
[24] McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D.; Viswanathan, V.; Hummelshøj, J.; Nørskov, J.; Luntz, A. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997-1001.
[25] Gierszewski, P.; Finn, P.; Kirk, D. Properties of LiOH and LiNO3 Aqueous Solutions. Fusion Eng. Des. 1990, 13, 59-71.
[26] Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 2014, 114, 5611-5640.
[27] He, P.; Zhang, T.; Jiang, J.; Zhou, H. Lithium-air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267-1280.
[28] Thokchom, J. S.; Kumar, B. Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass-ceramic. J. Power Sources 2008, 185, 480-485.
[29] Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 Battery. Chem. Commun. 2011, 47, 3463-3465.
[30] Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C.; Tarascon, J. M. Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li-O2/CO2 Batteries by Controlling the Superoxide Intermediate. J. Phys. Chem. Lett. 2017, 8, 214-222.
[31] Németh, K.; Srajer, G. CO2/Oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-air Type Rechargeable Batteries. RSC Adv. 2014, 4, 1879-1885.
[32] Xie, J.; Liu, Q.; Huang, Y.; Wu, M.; Wang, Y. A Porous Zn Cathode for Li-CO2 Batteries Generating Fuel-gas CO. J. Mater. Chem. A 2018, 6, 13952-13958.
[33] Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li-air Cathodes Pre-filled with Discharge Products Using an Ether-based Electrolyte Solution: Implications for Cycle-life of Li-air Cells. Phys. Chem. Chem. Phys. 2013, 15, 11478-11493.
[34] Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H. Li-CO2 Electrochemistry: a New Strategy for CO2 Fixation and Energy Storage. Joule 2017, 1, 359-370.
[35] Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Angew. Chem. Int. Ed. 2018, 57, 5529-5533.
[36] Yazami, R.; Touzain, P. A Reversible Graphite-lithium Negative Electrode for Electrochemical Generators. J. Power Sources 1983, 9, 365-371.
[37] Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The Lithium-oxygen Battery with Ether‐based Electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609-8613.
[38] Black, R.; Oh, S. H.; Lee, J.-H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 2012, 134, 2902-2905.
[39] Li, S.; Liu, Y.; Zhou, J.; Hong, S.; Dong, Y.; Wang, J.; Gao, X.; Qi, P.; Han, Y.; Wang, B. Monodispersed MnO Nanoparticles in Graphene-An Interconnected N-doped 3D Carbon Framework as a Highly Efficient Gas Cathode in Li-CO2 Batteries. Energy Environ. Sci. 2019, 12, 1046-1054.
[40] Imanishi, N.; Yamamoto, O. Rechargeable Lithium-air Batteries: Characteristics and Prospects. Mater. Today 2014, 17, 24-30.
[41] Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040-8047.
[42] Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. Lithium-air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte. J. Power Sources 2005, 146, 766-769.
[43] Huie, M. M.; DiLeo, R. A.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Ionic Liquid Hybrid Electrolytes for Lithium-ion Batteries: A Key Role of The Separator-electrolyte Interface in Battery Electrochemistry. ACS Appl. Mater. Interfaces 2015, 7, 11724-11731.
[44] Kang, J.; Li, O. L.; Saito, N. Hierarchical Meso-macro Structure Porous Carbon Black as Electrode Materials in Li-air Battery. J. Power Sources 2014, 261, 156-161.
[45] Yoo, E.; Zhou, H. Li-air Rechargeable Battery based on Metal-free Graphene Nanosheet Catalysts. ACS Nano 2011, 5, 3020-3026.
[46] Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L. Highly Rechargeable Lithium-CO2 Batteries with a Boron‐and Nitrogen‐codoped Holey‐graphene Cathode. Angew. Chem. Int. Ed. 2017, 56, 6970-6974.
[47] Doshi, J.; Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrost. 1995, 35, 151-160.
[48] Wu, J.; Park, H. W.; Yu, A.; Higgins, D.; Chen, Z. Facile Synthesis and Evaluation of Nanofibrous Iron–carbon Based Non-precious Oxygen Reduction Reaction Catalysts for Li-O2 Battery Applications. J. Phys. Chem. C 2012, 116, 9427-9432.
[49] Nie, H.; Xu, C.; Zhou, W.; Wu, B.; Li, X.; Liu, T.; Zhang, H. Free-standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li-O2 Batteries. ACS Appl. Mater. Interfaces 2016, 8, 1937-1942.
[50] Li, C. C.; Zhang, W.; Ang, H.; Yu, H.; Xia, B. Y.; Wang, X.; Yang, Y. H.; Zhao, Y.; Hng, H. H.; Yan, Q. Compressed Hydrogen Gas-induced Synthesis of Au-Pt Core-shell Nanoparticle Chains towards High-performance Catalysts for Li-O2 Batteries. J. Mater. Chem. A 2014, 2, 10676-10681.
[51] Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-Shell-Structured CNT@RuO2 Composite as a High‐performance Cathode Catalyst for Rechargeable Li-O2 Batteries. Angew. Chem. Int. Ed. 2014, 53, 442-446.
[52] Xing, Y.; Yang, Y.; Li, D.; Luo, M.; Chen, N.; Ye, Y.; Qian, J.; Li, L.; Yang, D.; Wu, F. Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long‐life Rechargeable Lithium-CO2 Batteries. Adv. Mater. 2018, 30, 1803124.
[53] Qiao, Y.; Xu, S.; Liu, Y.; Dai, J.; Xie, H.; Yao, Y.; Mu, X.; Chen, C.; Kline, D. J.; Hitz, E. M. Transient, in situ Synthesis of Ultrafine Ruthenium Nanoparticles for a High-rate Li-CO2 Battery. Energy Environ. Sci. 2019, 12, 1100-1107.
[54] Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. α‐MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 4521-4524.
[55] Cui, Y.; Wen, Z.; Liu, Y. A Free-Standing-type Design for Cathodes of Rechargeable Li-O2 Batteries. Energy Environ. Sci. 2011, 4, 4727-4734.
[56] Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Synthesis of Perovskite‐based Porous La0.75Sr0.25MnO3 Nanotubes as a Highly Efficient Electrocatalyst for Rechargeable Lithium-oxygen Batteries. Angew. Chem. Int. Ed. 2013, 52, 3887-3890.
[57] Mao, Y.; Tang, C.; Tang, Z.; Xie, J.; Chen, Z.; Tu, J.; Cao, G.; Zhao, X. Long-life Li-CO2 Cells with Ultrafine IrO2-decorated Few-layered δ-MnO2 Enabling Amorphous Li2CO3 Growth. Energy Storage Mater. 2019, 18, 405-413.
[58] Chung, D. Y.; Park, S.-K.; Chung, Y.-H.; Yu, S.-H.; Lim, D.-H.; Jung, N.; Ham, H. C.; Park, H.-Y.; Piao, Y.; Yoo, S. J. Edge-exposed MoS2 Nano-assembled Structures as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Nanoscale 2014, 6, 2131-2136.
[59] Asadi, M.; Kumar, B.; Liu, C.; Phillips, P.; Yasaei, P.; Behranginia, A.; Zapol, P.; Klie, R. F.; Curtiss, L. A.; Salehi-Khojin, A. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-oxygen Batteries. ACS Nano 2016, 10, 2167-2175.
[60] Cheng, H.; Scott, K. Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium-air Batteries. J. Power Sources 2010, 195, 1370-1374.
[61] Zhang, P.-F.; Lu, Y.-Q.; Wu, Y.-J.; Yin, Z.-W.; Li, J.-T.; Zhou, Y.; Hong, Y.-H.; Li, Y.-Y.; Huang, L.; Sun, S.-G. High-performance Rechargeable Li-CO2/O2 Battery with Ru/N-doped CNT Catalyst. Chem. Eng. J. 2019, 224-233.
[62] Jung, K.-N.; Kim, J.; Yamauchi, Y.; Park, M.-S.; Lee, J.-W.; Kim, J. H. Rechargeable Lithium-air Batteries: A Perspective on the Development of Oxygen Electrodes. J. Mater. Chem. A 2016, 4, 14050-14068.
[63] Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-free Anodes for High-performance Sodium-ion Batteries. Sci. Rep. 2015, 5, 9254.
[64] Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H. Growth of Large-area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 12, 1538-1544.
[65] Asadi, M.; Kumar, B.; Liu, C.; Phillips, P.; Yasaei, P.; Behranginia, A.; Zapol, P.; Klie, R. F.; Curtiss, L. A.; Salehi-Khojin, A. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–oxygen Batteries. ACS Nano 2016, 10, 2167-2175.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73302-
dc.description.abstract18世紀工業革命促使人類生活型態之巨變,使人們對於能源之需求日益遽增,然傳統多使用火力發電作為能量來源,於產能過程中不可避免地造成大量之碳排放,致使全球暖化問題迫在眉睫。近年綠色替代能源之相關研究蓬勃發展,舉凡風力能、太陽能與水力能之研究創新與突破,逐漸帶動再生能源革命。產生能源,即須以特定形式將其加以儲存,電池-目前最為廣泛應用之儲能設備,即成為最佳之研究對象。鋰二氧化碳電池(lithium carbon dioxide battery)因具備高能量密度與高比電容量之優點,亦能解決溫室氣體排放之問題,已成為近年極具潛力之儲能裝置。
本研究合成二硫化鉬(molybdenum disulfide)複合奈米碳纖維(carbon nanofibers)與奈米碳管(carbon nanotubes)作為鋰二氧化碳電池觸媒。奈米級碳材具極佳之導電性與熱穩定性,與其高表面積之特性助於儲存放電之碳酸鋰(lithium carbonate)沉積。二硫化鉬具特殊催化性質,助於充電時催化碳酸鋰分解。
本研究藉由X光粉末繞射儀(X-ray diffraction spectroscopy; XRD)、同步輻射X光吸收光譜(X-ray absorption spectroscopy; XAS)與X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS)鑑定觸媒晶格與價態;以掃描式電子顯微鏡(scanning electron microscope; SEM)與穿透式電子顯微鏡(transmission electron microscopy; TEM)觀察觸媒之形貌;並藉循環伏安法(cyclic voltammetry; CV) 與電化學交流阻抗法(electrochemical impedance spectrum; EIS)探討觸媒電化學活性;再藉拉曼光譜分析儀(Raman analysis spectroscopy; Raman)探討觸媒之二維平面性質;最終藉充放電機測試電池電容量與循環圈數穩定性。經上述檢定,二硫化鉬奈米複合材料具降低鋰二氧化碳電池過電壓之效果,且具極佳循環穩定性。
zh_TW
dc.description.abstractThe industrial revolution in eighteenth-century has caused great change in humans’ life. Human beings’ demand for energy has increased dramatically, while fossil fuel is the common energy resources in the past decades, a large number of carbon emissions are inevitably generated in the process of energy production. Therefore, the serious problem of global warming has emerged imminently. Recent years, the related researches of green alternative energy have flourished. Inspired by the innovation and breakthrough of sustainable energy research, such as wind energy, solar energy, and water energy, the renewable energy revolution is gradually driven. When we generate energy, we must use specific devices to store it. Battery, the widely used energy storage device currently, is the best candidate for energy storage. Lithium carbon dioxide battery with the advantages of high energy density, high specific capacity and the solution to the emission of greenhouse gas nowadays has become a promising energy storage device in the past years.
  In this study, we synthesized molybdenum disulfide combined with carbon nanofibers or carbon nanotubes as cathode catalysts for lithium carbon dioxide battery. Nano-scaled carbon materials possess excellent conductivity and thermal stability. In addition, the high surface of nanomaterials has contributed to the storage of lithium carbonate which serves as the discharging product in the battery. When charging, the molybdenum disulfide has a catalytic activity to help decomposed lithium carbonate.
  X-ray diffraction spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were used to characterize crystal lattice and oxidation state of catalysts. Scanning electron microscope and transmission electron microscopy were used to observe the morphology of catalysts. Following, the cyclic voltammetry and electrochemical impedance spectroscopy were executed to investigate catalytical electrochemistry activity. Furthermore, Raman spectroscopy was implemented to understand the 2D properties of catalysts. In the end, battery capacity and cycle stability were measured by galvanostatic discharge/charge machine. According to the characterization above, molybdenum disulfide with nanofibers materials are capable of decreasing overpotential during discharge and charge and possessing extremely remarkable cycles of stability.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:27:20Z (GMT). No. of bitstreams: 1
ntu-108-R06223154-1.pdf: 11269015 bytes, checksum: ef6bcb75fa5286ba820cd8de4ca8f0c3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
口試委員審定書 I
謝辭 II
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 鋰離子電池 1
1.2 鋰空氣電池 2
1.2.1 鋰氧電池 2
1.2.1.1 鋰氧電池工作原理 3
1.2.2 鋰二氧化碳電池 5
1.2.2.1 鋰二氧化碳電池工作原理 5
1.2.2.2 鋰空氣電池之問題 7
1.3 鋰空氣電池之種類 8
1.3.1 有機體系鋰空氣電池 9
1.3.2 水系鋰空氣電池 9
1.3.3 混合體系鋰空氣電池 10
1.3.4 全固態鋰空氣電池 11
1.4 鋰二氧化碳電池充放電機制探討 11
1.4.1 放電機制探討 11
1.4.2 充電機制探討 15
1.5 有機體系鋰空氣電池溶劑種類 17
1.5.1 碳酸酯類 18
1.5.2 醚類 19
1.5.3 離子液體 20
1.6 鋰空氣電池常用陰極觸媒 20
1.6.1 碳材 20
1.6.1.1 碳黑 20
1.6.1.2 石墨烯 21
1.6.1.3 奈米碳管 23
1.6.1.4 奈米纖維 23
1.6.2 貴金屬 25
1.6.2.1 鉑與金 25
1.6.2.2 銥與釕 26
1.6.3 金屬化合物 29
1.6.3.1 過渡金屬氧化物 29
1.6.3.2 碳化鉬 31
1.6.3.3 二硫化鉬與石墨烯 32
1.7 研究動機與目的 35
第二章 實驗步驟與儀器分析原理 37
2.1 二硫化鉬/奈米碳管與二硫化鉬/奈米碳纖維複合材料之合成 37
2.1.1 二硫化鉬合成 38
2.1.1.1 不同比例二硫化鉬/奈米碳管複合材料合成 38
2.1.1.2 二硫化鉬/奈米碳纖維複合材料合成 39
2.1.2 觸媒漿料與電極配製 40
2.1.3 鈕扣電池組裝 41
2.1.4 鋰二氧化碳電池測試系統 42
2.2 材料結構鑑定 42
2.2.1 X光繞射儀(X-RAY DIFFRACTION; XRD) 42
2.2.2 掃描式電子顯微鏡(scanning electron microscope; SEM) 44
2.2.3 穿透式電子顯微鏡(transmission electron microscope; TEM) 45
2.2.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 46
2.2.5 X光吸收光譜(X-ray absorption spectroscopy; XAS) 48
2.2.6 X光吸收光譜之近邊緣結構(X-ray absorption near edge structure; XANES) 49
2.2.7 X光吸收光譜之延伸區精細結構(extended X-ray absorption fine structure; EXAFS) 50
2.2.8 BET比表面積及孔徑分析儀 51
2.2.9 循環伏安法(cyclic voltammetry; CV) 52
2.2.10 電化學交流阻抗法(electrochemical impedance spectrum; EIS) 53
2.2.11 拉曼光譜儀(Raman spectroscopy; Raman) 54
2.2.12 充放電測試儀 55
第三章 結果與討論 57
3.1 二硫化鉬/奈米碳管複合材料與其相關鑑定 57
3.1.1 XRD鑑定分析 57
3.1.2 XPS分析 59
3.1.3 XANES鑑定 60
3.1.4 EXAFS鑑定 61
3.1.5 SEM結構分析 64
3.1.6 TEM結構分析 64
3.1.7 Raman 圖譜分析 66
3.1.8 BET 比表面積與孔徑分析 68
3.1.9 二硫化鉬/奈米碳管複合材料之電性分析 69
3.1.9.1 循環伏安法(CV) 69
3.1.9.2 電化學阻抗譜圖 (EIS) 70
3.1.9.3 充放電分析 71
3.2 二硫化鉬/奈米碳管複合材料之充放電機制分析 74
3.2.1 ex-situ XRD放電產物分析 74
3.2.2 SEM產物形貌分析 76
3.2.3 XPS產物特性分析 76
3.2.4 電池衰退原因 77
3.3 二硫化鉬/奈米碳纖維複合材料與其相關鑑定 79
3.3.1 XRD鑑定分析 79
3.3.2 XPS分析 80
3.3.3 XAS分析 81
3.3.4 SEM結構分析 82
3.3.5 TEM結構分析 83
3.3.6 Raman圖譜分析 84
3.3.7 二硫化鉬/奈米纖維複合材料之電性分析 85
3.3.7.1 充放電分析 85
3.4 二硫化鉬/奈米纖維複合材料之充放電機制分析 89
3.4.1 SEM產物形貌分析 89
第四章 結論 90
參考文獻 91
dc.language.isozh-TW
dc.subject鋰二氧化碳電池zh_TW
dc.subject鋰空氣電池zh_TW
dc.subject奈米碳纖維zh_TW
dc.subject奈米碳管zh_TW
dc.subject二硫化鉬zh_TW
dc.subject電紡織zh_TW
dc.subjectMoS2en
dc.subjectCarbon nanotubesen
dc.subjectCarbon nanofibersen
dc.subjectLi-CO2 batteryen
dc.subjectLi-air batteryen
dc.subjectElectrospinningen
dc.title二硫化鉬奈米材料應用於鋰二氧化碳電池陰極觸媒zh_TW
dc.titleMolybdenum Disulfide Nanomaterials for Lithium-CO2 Battery Cathode Catalystsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳振中(Chun-Chung Chan),張家欽(Chia-Chin Chang),林鴻明(Hong-Ming Lin),魏大華(Da-Hua Wei)
dc.subject.keyword二硫化鉬,奈米碳管,奈米碳纖維,鋰二氧化碳電池,鋰空氣電池,電紡織,zh_TW
dc.subject.keywordMoS2,Carbon nanotubes,Carbon nanofibers,Li-CO2 battery,Li-air battery,Electrospinning,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201900962
dc.rights.note有償授權
dc.date.accepted2019-06-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved