請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73300完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁(Hsien-Yeh Chen) | |
| dc.contributor.author | Ya-Ru Chiu | en |
| dc.contributor.author | 邱亞茹 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:27:13Z | - |
| dc.date.available | 2022-07-01 | |
| dc.date.copyright | 2019-07-01 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-06-24 | |
| dc.identifier.citation | 1. Thomas, K. M., Hydrogen adsorption and storage on porous materials. Catalysis Today 2007, 120 (3-4), 389-398.
2. Ohji, T.; Fukushima, M., Macro-porous ceramics: processing and properties. International Materials Reviews 2013, 57 (2), 115-131. 3. Haifei, Z.; James, L.; Cooper, A. I., Aligned Porous Materials by Directional Freezing of Solutions in Liquid CO2. J. Am. Chem. Soc. 2005, 127 (39), 13482-13483. 4. Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P., Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications 2005, 7 (1), 97-100. 5. Zhao, B.; Zhang, J.; Wang, X.; Li, C., Water-assisted fabrication of honeycomb structure porous film from poly(l-lactide). J. Mater. Chem. 2006, 16 (5), 509-513. 6. Li, Y.; Fu, Z. Y.; Su, B. L., Hierarchically Structured Porous Materials for Energy Conversion and Storage. Advanced Functional Materials 2012, 22 (22), 4634-4667. 7. Lakes, R., Materials with structural hierarchy. Naturevolume 1993, 361, 511–515. 8. Weiner S., W. H. D., THE MATERIAL BONE: Structure-Mechanical Function Relations. Annual Review of Materials Science 1998, 28, 271-298. 9. Fratzl, P.; Weinkamer, R., Nature’s hierarchical materials. Progress in Materials Science 2007, 52 (8), 1263-1334. 10. Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O., Bioinspired structural materials. Nat Mater 2015, 14 (1), 23-36. 11. Wang, K.; Chen, F.; Li, Z.; Fu, Q., Control of the hierarchical structure of polymer articles via “structuring” processing. Progress in Polymer Science 2014, 39 (5), 891-920. 12. Roth, W. J.; Gil, B.; Makowski, W.; Marszalek, B.; Eliasova, P., Layer like porous materials with hierarchical structure. Chem Soc Rev 2016, 45 (12), 3400-3438. 13. Corni, I.; Harvey, T. J.; Wharton, J. A.; Stokes, K. R.; Walsh, F. C.; Wood, R. J., A review of experimental techniques to produce a nacre-like structure. Bioinspir Biomim 2012, 7 (3), 1-23. 14. Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W., Zeolitic materials with hierarchical porous structures. Adv Mater 2011, 23 (22-23), 2602-15. 15. Qian, H.; Greenhalgh, E. S.; Shaffer, M. S. P.; Bismarck, A., Carbon nanotube-based hierarchical composites: a review. Journal of Materials Chemistry 2010, 20 (23), 4751-4762. 16. Stein, A.; Li, F.; Denny, N. R., Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chem. Mater. 2008, 20 (3), 649–666. 17. Gutiérrez, M. C.; Ferrer, M. L.; Monte, F. d., Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chem. Mater. 2008, 20 (3), 634–648. 18. Nyce, G. W.; Hayes, J. R.; Hamza, A. V.; Satcher, J. H., Synthesis and Characterization of Hierarchical Porous Gold Materials. Chem. Mater. 2007, 19 (3), 334-346. 19. Zhang, H.; Cooper, A. I., Aligned Porous Structures by Directional Freezing. Advanced Materials 2007, 19 (11), 1529-1533. 20. Zhang, H.; Cooper, A. I., Synthesis and applications of emulsion-templated porous materials. Soft Matter 2005, 1 (2), 107-113. 21. Monte, Q. P.; Sharma, U.; Mikos, A. G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering 2006, 12 (5), 1197-1211. 22. Yin, Y.; Lu, Y.; Gates, B.; Xia, Y., Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical Society 2001, 123 (36), 8718-8729. 23. Xiu, Y.; Zhu, L.; Hess, D. W.; Wong, C. P., Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity. Nano Letters 2007, 7 (11), 3388-3393. 24. Moutos, F. T.; Freed, L. E.; Guilak, F., A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials 2007, 6, 162. 25. Sultan, S.; Mathew, A. P., 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale 2018, 10 (9), 4421-4431. 26. Gao, F.; Xu, Z.; Liang, Q.; Liu, B.; Li, H.; Wu, Y.; Zhang, Y.; Lin, Z.; Wu, M.; Ruan, C.; Liu, W., Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect. Advanced Functional Materials 2018, 28 (13), 1706644. 27. Miszta, K.; de Graaf, J.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, L.; Cingolani, R.; van Roij, R.; Dijkstra, M.; Manna, L., Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Materials 2011, 10, 872. 28. Wong, L. L.; Ikem, V. O.; Menner, A.; Bismarck, A., Macroporous Polymers with Hierarchical Pore Structure from Emulsion Templates Stabilised by Both Particles and Surfactants. Macromol Rapid Commun 2011, 32 (19), 1563-8. 29. Schoof H, A. J., Heschel I, Rau G., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research 2001, 58 (4), 352-357. 30. Fukasawa, T.; Ando, M.; Ohji, T.; Kanzaki, S., Synthesis of Porous Ceramics with Complex Pore Structure by Freeze‐Dry Processing. Journal of the American Ceramic Society 2001, 84 (1), 230-232. 31. Deville, S.; Saiz, E.; Saiz, R. K.; Tomsia, A. P., Freezing as a Path to Build Complex Composites. Science 2006, 311 (5760), 515-518. 32. Daoussi, R.; Vessot, S.; Andrieu, J.; Monnier, O., Sublimation kinetics and sublimation end-point times during freeze-drying of pharmaceutical active principle with organic co-solvent formulations. Chemical Engineering Research and Design 2009, 87 (7), 899-907. 33. Gorham, W. F., A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4 (12), 3027-3039. 34. Senkevich, J. J.; Yang, G. R.; Lu, T. M., The facile surface modification of poly(p-xylylene) ultrathin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 216 (1–3), 167-173. 35. Kahouli, A.; Sylvestre, A.; Pairis, S.; Laithier, J. F., Effect of ClH aromatic substitution on structural and dielectric properties of poly(p-xylylene). Polymer 2012, 53 (14), 3001-3007. 36. Senkevich, J. J.; Wang, P.-I., Molecular Layer Chemistry via Parylenes. Chemical Vapor Deposition 2009, 15 (4-6), 91-94. 37. Rahaman, M. N.; Fu, Q., Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society 2008, 91 (12), 4137-4140. 38. Zhang, H.; Wang, D.; Butler, R.; Campbell, N. L.; Long, J.; Tan, B.; Duncalf, D. J.; Foster, A. J.; Hopkinson, A.; Taylor, D.; Angus, D.; Cooper, A. I.; Rannard, S. P., Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 2008, 3 (8), 506-511. 39. Madihally, S. V.; Matthew, H. W. T., Porous chitosan scaffolds for tissue engineering. Biomaterials 1999, 20 (12), 1133-1142. 40. Deville, S., Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials 2008, 10 (3), 155-169. 41. Qian, L.; Zhang, H., Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology & Biotechnology 2011, 86 (2), 172-184. 42. Tung, H.-Y.; Guan, Z.-Y.; Liu, T.-Y.; Chen, H.-Y., Vapor sublimation and deposition to build porous particles and composites. Nature Communications 2018, 9 (1), 2564. 43. Seager, H.; Taskis, C. B.; Syrop, M.; Lee, T. J., Structure of Products Prepared by Freeze-Drying Solutions Containing Organic Solvents. PDA Journal of Pharmaceutical Science and Technology 1985, 39 (4), 161-179. 44. Gutiérrez, M. C.; Ferrer, M. L.; del Monte, F., Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chemistry of Materials 2008, 20 (3), 634-648. 45. Tung, H.-Y.; Sun, T.-P.; Sun, H.-Y.; Guan, Z.-Y.; Hu, S.-K.; Chao, L.; Chen, H.-Y., Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Applied Materials Today 2017, 7, 77-81. 46. Fortin, J. B.; Lu, T. M., A Model for the Chemical Vapor Deposition of Poly(para-xylylene) (Parylene) Thin Films. Chemistry of Materials 2002, 14 (5), 1945-1949. 47. Vaeth, K. M.; Jensen, K. F., Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of Materials 2000, 12 (5), 1305-1313. 48. Grant, N.; Zhang, H., Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach. J Colloid Interface Sci 2011, 356 (2), 573-8. 49. Towata, A.; Sivakumar, M.; Yasui, K.; Tuziuti, T.; Kozuka, T.; Iida, Y., Ultrasound induced formation of paraffin emulsion droplets as template for the preparation of porous zirconia. Ultrason Sonochem 2007, 14 (6), 705-10. 50. Chang, T. Y.; Yadav, V. G.; De Leo, S.; Mohedas, A.; Rajalingam, B.; Chen, C.-L.; Selvarasah, S.; Dokmeci, M. R.; Khademhosseini, A., Cell and Protein Compatibility of Parylene-C Surfaces. Langmuir 2007, 23 (23), 11718-11725. 51. Tsai, Y.-T.; Huang, C.-W.; Liu, H.-Y.; Huang, M.-C.; Sun, T.-P.; Chen, W.-C.; Wu, C.-Y.; Ding, S.-T.; Chen, H.-Y., Enhanced bone morphogenic property of parylene-C. Biomaterials Science 2016, 4 (12), 1754-1760. 52. Uhlig, K.; Madaboosi, N.; Schmidt, S.; Jäger, M. S.; Rose, J.; Duschl, C.; Volodkin, D. V., 3d localization and diffusion of proteins in polyelectrolyte multilayers. Soft Matter 2012, 8 (47). 53. Yushin, G.; Hoffman, E. N.; Barsoum, M. W.; Gogotsi, Y.; Howell, C. A.; Sandeman, S. R.; Phillips, G. J.; Lloyd, A. W.; Mikhalovsky, S. V., Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials 2006, 27 (34), 5755-62. 54. Chen, H. Y.; Lin, T. J.; Tsai, M. Y.; Su, C. T.; Yuan, R. H.; Hsieh, C. C.; Yang, Y. J.; Hsu, C. C.; Hsiao, H. M.; Hsu, Y. C., Vapor-based tri-functional coatings. Chemical Communications 2013, 49 (40), 4531-4533. 55. Tsai, M.-Y.; Chen, Y.-C.; Lin, T.-J.; Hsu, Y.-C.; Lin, C.-Y.; Yuan, R.-H.; Yu, J.; Teng, M.-S.; Hirtz, M.; Chen, M. H.-C.; Chang, C.-H.; Chen, H.-Y., Vapor-Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifications. Advanced Functional Materials 2014, 24 (16), 2281-2287. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73300 | - |
| dc.description.abstract | 非對稱結構之多孔材料因其機械、化學性質可透過製程操控,而被廣為研究,並廣泛應用於吸附劑、非勻相觸媒、膜過濾系統、表面疏水改質、藥物承載與傳遞等領域中。本篇研究提出一種創新的製備方法,基於氣相昇華與沉積機制由物質非對稱分布創造非對稱多孔結構,其展現多樣性與多項優點,包括可操控的孔洞結構及功能性;另外,透過調控時間相依製程參數,可控制材料本體尺寸或分子分布;本研究以製備> 500 µm至次微米微粒展示此項技術與其內部非對稱孔洞結構。製備過程中氣相聚對二甲苯(poly-p-xylylene)沉積於昇華球狀模板,同時固體模板昇華產生氣體逸散,擾動poly-p-xylylene沉積與聚合,因而留下孔洞,因此可藉由調控模板之昇華速度來控制多孔顆粒之孔隙度。同時根據液體昇華及界面特性,以快速冷凍複合物得穩定球狀模板,進行氣相昇華/沉積生成poly-p-xylylene顆粒,並由昇華氣體及非昇華液體產生非對稱孔洞。此外,以瞬間凝固法中斷質量傳遞將功能性物質限制在結構材料中,便功能化多孔顆粒,並透過螢光訊號觀察分子分布。本研究提供一套全新的方法製備功能性非對稱材料,在氣相中一步構建和組裝,並預期此材料有無限應用可能。 | zh_TW |
| dc.description.abstract | Asymmetrically structured porous materials with controlled mechanical or chemical properties have been extensively studied and applied to adsorbents, heterogeneous catalysts, membrane filtration systems, surface hydrophobic modification, drug loading and delivery. Here we reported an innovative method for the fabrication of asymmetrical porous structures based on a vapor-phased sublimation and deposition process. The fabricated materials exhibited versatility and advantages being well-controlled pores structures and functional properties from an asymmetrical distribution. By using a time dependent customization parameter to control the bulk size or the dispersion of molecules, the fabrication of materials were demonstrated to produce particles with asymmetrical pores structure and with bulk size ranging from >500 µm to submicron. The particles were constructed via vapor depositions of poly-p-xylylenes on sublimating solid template. Pore structure was formed by the releasing sublimated vapor of the solid template disrupted poly-p-xylylene deposition and polymerization, thus allowing the control of porosity by modulating the sublimation speed of the template. Also according to the sublimation and interface properties of liquids, we got the stable composite as the sublimation template by freezing, and the proposed poly-p-xylylene particles is prepared subsequently by vapor sublimation/deposition mechanism to yield asymmetrical porous structure caused by the sublimated vapors and the non-sublimable liquid during the fabrication process. And the functional substances were confined within the structural materials based on a timed solidification of mass transport in transient regime and were observed through the fluorescence signals. The proposed functional asymmetrical materials were constructed and assembled in vapor phase and in one step, and prospective materials produced by the method with novel properties are expected with unlimited applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:27:13Z (GMT). No. of bitstreams: 1 ntu-108-R06524035-1.pdf: 2695547 bytes, checksum: 43a65c3515d8ca303a07144fc391c275 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV Content VI List of Figures 1 Chapter 1 Introduction 2 1.1 Asymmetrical Porous Material 2 1.2 Fabrication Methods 4 1.3 Poly-para-xylylene 5 1.4 Research Motivation and Objectives 6 Chapter 2 Experimental Section 9 2.1 Analysis Instruments 9 2.2 Consumable Materials 10 2.3 Chemical Vapor Deposition (CVD) 11 2.3.1 Preparation of Ice Templates 11 2.3.2 Vapor Sublimation and Deposition 13 2.4 Chemical Characterizations 15 2.4.1 Residual Gas Analyzer (RGA) 15 2.4.2 Fourier Transform Infrared Spectroscopy (FT-IR) 15 2.4.3 X-ray Photoelectron Spectroscopy (XPS) 15 2.5 Structural Analysis 17 2.5.1 Scanning Electron Microscopy (SEM) 17 2.5.2 X-ray Micro Computed Tomography (micro-CT) 17 2.5.3 Transmission Electron Microscopy (TEM) 18 2.5.4 Confocal Laser Scanning Microscope (CLSM) 18 Chapter 3 Results and Discussion 19 3.1 Fabrication Method Principle 19 3.2 Chemical Composition of Polychloro-p-xylylene Particle 22 3.3 Porous Particle with Flexible Size Control 25 3.4 Interior Structure 26 3.4.1 Cross-section of Porous Particle 26 3.4.2 3D Structural Imaging 27 3.4.3 TEM Micrograph 29 3.5 Controllable Porous Structures 30 3.6 Localization of the Functional Substances 32 Chapter 4 Conclusions 35 4.1 Conclusions 35 4.2 Future Work 36 Reference 37 | |
| dc.language.iso | en | |
| dc.subject | 昇華 | zh_TW |
| dc.subject | 分子定位 | zh_TW |
| dc.subject | 非對稱結構 | zh_TW |
| dc.subject | 多孔性材料 | zh_TW |
| dc.subject | 氣相沉積 | zh_TW |
| dc.subject | molecular localization | en |
| dc.subject | asymmetrical structure | en |
| dc.subject | vapor deposition | en |
| dc.subject | sublimation | en |
| dc.subject | porous material | en |
| dc.title | 利用氣相沉積技術製備並調控顆粒之非對稱多孔結構 | zh_TW |
| dc.title | Controlling Asymmetrical Porous Structures of Particles Based on Vapor Deposition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游佳欣(Jia-shing Yu),張豐丞(Feng-Cheng Chang) | |
| dc.subject.keyword | 非對稱結構,氣相沉積,昇華,多孔性材料,分子定位, | zh_TW |
| dc.subject.keyword | asymmetrical structure,vapor deposition,sublimation,porous material,molecular localization, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201901013 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-06-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
