請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7327完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 巫婧柔 | zh_TW |
| dc.contributor.author | Jing Rou Boo | en |
| dc.date.accessioned | 2021-05-19T17:41:35Z | - |
| dc.date.available | 2024-06-01 | - |
| dc.date.copyright | 2019-07-10 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1 Kurt Lohbeck, H. H., Werner Fuhrmann, Norbert Fedtke, Maleic and Fumaric Acids, 2000, 22
2 Felthouse, T. B., J. Mitchell, S. Mummey, Maleic anhydride, Maleic acid, and Fumaric acid, 1997, 15 3 Delhomme, C., Weuster-Botz, D. & Kühn, F. E., Succinic acid from renewable resources as a C4building-block chemical-a review of the catalytic possibilities in aqueous media, Green Chem., 2009, 11, 13-26 4 Maleic Anhydride Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012 - 2018, Transparency Market Research (TMR), 2013 5 Albonetti, S., Cavani, F. & TrifirÒ, F., Key Aspects of Catalyst Design for the Selective Oxidation of Paraffins, Catalysis Reviews, 1996, 38, 413-438 6 Centi, G., Trifiro, F., Ebner, J. R. & Franchetti, V. M., Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide, Chemical Reviews, 1988, 88, 55-80 7 Alonso, D. M., Bond, J. Q. & Dumesic, J. A., Catalytic conversion of biomass to biofuels, Green Chemistry, 2010, 12, 1493-1513 8 Huber, G. W., Iborra, S. & Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical reviews, 2006, 106, 4044-4098 9 Dutta, S., De, S., Saha, B., Alam, M. I. J. C. S. & Technology, Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels, 2012, 2,2025-2036 10 Gallezot, P., Conversion of biomass to selected chemical products, Chemical Society Reviews, 2012, 41, 1538-1558 11 Gallezot, P., Catalytic routes from renewables to fine chemicals, Catalysis Today,2007, 121, 76-91 12 Hu, L. et al., Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes, Rsc Advances, 2012, 2, 11184-11206 13 Karinen, R., Vilonen, K. & Niemelä, M., Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural, ChemSusChem, 2011, 4, 1002-1016 14 Mamman, A. S. et al., Furfural: Hemicellulose/xylose derived biochemical, Biofuels, Bioproducts and Biorefining, 2008, 2, 438-454 15 Brownlee Harold J, M. C. S., Industrial Development of Furfural, Industrial Engineering Chemistry, 1948, 40, 201-204 16 Bozell, J. J. & Petersen, G. R., Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s “Top 10” revisited, Green Chemistry, 2010, 12, 539-554 17 Chheda, J. N. & Dumesic, J. A., An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates, Catalysis Today, 2007, 123, 59-70 18 Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A., Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science, 2005, 308, 1446-1450 19 Li, X., Jia, P. & Wang, T., Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals, ACS Catalysis, 2016, 6, 7621-7640 20 Zhang, J., Zhao, Z., Xia, Z. & Dai, L., A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nature nanotechnology, 2015, 10, 444 21 Zheng, Y. et al., Hydrogen evolution by a metal-free electrocatalyst, Nature communications, 2014, 5, 3783 22 Yang, L. et al., Boron‐doped carbon nanotubes as metal‐free electrocatalysts for the oxygen reduction reaction, Angewandte Chemie International Edition, 2011, 50, 7132-7135 23 Hu, C. & Dai, L., Carbon‐based metal‐free catalysts for electrocatalysis beyond the ORR, Angewandte Chemie International Edition, 2016, 55, 11736-11758 24 Liu, X. & Dai, L., Carbon-based metal-free catalysts, Nature Reviews Materials, 2016, 1, 16064 25 Shui, J., Wang, M., Du, F. & Dai, L., N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science advances, 2015, 1, 1400129 26 Wei, Q. et al., Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions, Catalysts, 2015, 5, 1574-1602 27 Zhao, Y. et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?, Journal of the American Chemical Society, 2013, 135, 1201-1204 28 Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K., Nitrogendoped carbon nanomaterials as non-metal electrocatalysts for water oxidation, Nature communications, 2013, 4, 2390 29 Kumar, B. et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction, Nature communications, 2013, 4, 2819 30 Chaikittisilp, W., Ariga, K. & Yamauchi, Y., A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, Journal of Materials Chemistry A, 2013, 1, 14-19 31 Wood, K. N., O'Hayre, R. & Pylypenko, S., Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ.Sci., 2014, 7, 1212-1249 32 Deng, Y., Xie, Y., Zou, K. & Ji, X., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors, Journal of Materials Chemistry A, 2016, 4, 1144-1173 33 Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M., The chemistry and applications of metal-organic frameworks, Science, 2013, 341, 1230444 34 Perez, E., Karunaweera, C., Musselman, I., Balkus, K. & Ferraris, J., Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations, Processes, 2016, 4, 32 35 Kaye, S. S., Dailly, A., Yaghi, O. M. , Long, J. R., Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5), Journal of the American Chemical Society, 2007, 129, 14176 36 Li, J.-R., Kuppler, R. J. & Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks, Chemical Society Reviews, 2009, 38, 1477-1504 37 An, J., Geib, S. J. & Rosi, N. L., Cation-triggered drug release from a porous zinc− adeninate metal− organic framework, J. Am. Chem. Soc., 2009, 131, 8376-8377 38 Hu, Z., Deibert, B. J. & Li, J., Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chemical Society Reviews, 2014, 43, 5815-5840 39 Lee, J. et al., Metal-organic framework materials as catalysts, Chem Soc Rev, 2009, 38, 1450-1459 40 Zhu, Q. L. & Xu, Q., Metal-organic framework composites, Chem Soc Rev, 2014, 43, 5468-5512 41 Liu, B., Shioyama, H., Akita, T. & Xu, Q., Metal-organic framework as a template for porous carbon synthesis, Journal of the American Chemical Society, 2008, 130, 5390-5391 42 Huang, G. et al., Metal-Organic Framework-Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species, Chemistry, 2016, 22, 3470-3477 43 Xia, W., Mahmood, A., Zou, R. & Xu, Q., Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 2015, 8, 1837-1866 44 Hayashi, H., Cote, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M., Zeolite A imidazolate frameworks, Nature materials, 2007, 6, 501 45 Banerjee, R. et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 2008, 319, 939-943 46 Park, K. S. et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 2006, 103, 10186- 10191 47 Lee, Y.-R. et al., ZIF-8: A comparison of synthesis methods, Chemical Engineering Journal, 2015, 271, 276-280 48 Pan, Y., Liu, Y., Zeng, G., Zhao, L. & Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chemical Communications, 2011, 47, 2071-2073 49 Liu, N. L. et al., ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions, Scientific Reports, 2016, 6, 28847 50 Ma, W., Du, Y., Wang, N. & Miao, P., ZIF-8 derived nitrogen-doped porous carbon as metal-free catalyst of peroxymonosulfate activation, Environ Sci Pollut Res Int, 2017, 24, 16276-16288 51 Zhong, S., Zhan, C. & Cao, D., Zeolitic imidazolate framework-derived nitrogendoped porous carbons as high performance supercapacitor electrode materials, Carbon, 2015, 85, 51-59 52 Young, C. et al., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte, Phys Chem Chem Phys, 2016, 18, 29308-29315 53 Chao, S. et al., Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination, Sci Rep, 2017, 7, 39789 54 Nguyen, C. V. et al., A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion, Green Chemistry, 2016, 18, 5957-5961 55 Zhang, L. et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nanoscale, 2014, 6, 6590-6602 56 Zheng, F., Yang, Y. & Chen, Q., High lithium anodic performance of highly nitrogendoped porous carbon prepared from a metal-organic framework, Nature communications, 2014, 5, 5261 57 Salunkhe, R. R. et al., Fabrication of symmetric supercapacitors based on MOFderived nanoporous carbons, J. Mater. Chem. A, 2014, 2, 19848-19854 58 Guo, D. et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 2016, 351, 361-365 59 Faisal, S. N. et al., Pyridinic and graphitic nitrogen-rich graphene for highperformance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER, RSC Advances, 2017, 7, 17950-17958 60 Wu, J. et al., Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction, ACS applied materials & interfaces, 2015, 7, 14763-14769 61 Xing, T. et al., Observation of active sites for oxygen reduction reaction on nitrogendoped multilayer graphene, Acs Nano, 2014, 8, 6856-6862 62 Watanabe, H., Asano, S., Fujita, S.-i., Yoshida, H. & Arai, M., Nitrogen-Doped, Metal-Free Activated Carbon Catalysts for Aerobic Oxidation of Alcohols, ACS Catalysis, 2015, 5, 2886-2894 63 Long, J. et al., Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols, ACS Catalysis, 2012, 2, 622-631 64 Huan, T. N., Van Khai, T., Kang, Y., Shim, K. B. & Chung, H., Enhancement of quaternary nitrogen doping of graphene oxide via chemical reduction prior to thermal annealing and an investigation of its electrochemical properties, Journal of Materials Chemistry, 2012, 22, 14756 65 Guo, H. & Yin, G., Catalytic Aerobic Oxidation of Renewable Furfural with Phosphomolybdic Acid Catalyst: an Alternative Route to Maleic Acid, The Journal of Physical Chemistry C, 2011, 115, 17516-17522 66 Shi, S., Guo, H. & Yin, G., Synthesis of maleic acid from renewable resources: Catalytic oxidation of furfural in liquid media with dioxygen, Catalysis Communications, 2011, 12, 731-733 67 Araji, N. et al., Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide, Green Chemistry, 2017, 19, 98-101 68 Li, X., Ho, B., Lim, D. S. W. & Zhang, Y., Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2, Green Chemistry, 2017, 19, 914-918 69 Alonso-Fagúndez, N. et al., Aqueous-phase catalytic oxidation of furfural with H2O2: high yield of maleic acid by using titanium silicalite-1, Rsc Advances, 2014, 4, 54960- 54972 70 Alonso, D. M., Wettstein, S. G. & Dumesic, J. A., Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass, Green Chemistry, 2013, 15, 584 71 Pawar, R. C. et al., Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability, Sci Rep, 2016, 6, 31147 72 Ren, Y. et al., Selective and metal-free oxidation of biomass-derived 5- hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped carbon materials, Green Chemistry, 2018, 20, 4946-4956 73 Gao, Y. et al., Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation, Angew Chem Int Ed Engl, 2013, 52, 2109-2113 74 Shao, Y. et al., Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry, 2010, 20, 7491-7496 75 Sroka, Z. & Cisowski, W., Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids, Food and Chemical Toxicology, 2003, 41, 753-758 76 Li, X., Lan, X. & Wang, T., Selective oxidation of furfural in a bi-phasic system with homogeneous acid catalyst, Catalysis Today, 2016, 276, 97-104 77 Wahlen, J. et al., Titanium Silicalite 1 (TS‐1) Catalyzed Oxidative Transformations of Furan Derivatives with Hydrogen Peroxide, 2004, 346, 333-338 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7327 | - |
| dc.description.abstract | 馬來酸 (maleic acid; MA) 和馬來酸酐 (maleic anhydride) 為重要的四碳化合物,常被用於生產高附加值的化學品。然而在傳統工業中,馬來酸酐的生產是透過石油化學途徑,藉由氧化正丁烷和苯等可耗盡且不可再生的原料製備而成。反之,自生物質轉換所得之可再生資源,糠醛,也可經由氧化催化反應製備馬來酸。過去有關於糠醛製備馬來酸的轉化,大多以酸性催化爲主並存在許多的缺點。因此,本研究使用衍生自ZIF-8 的摻氮多孔碳材 (NC),首次在非酸性的環境中,將糠醛氧化轉化成馬來酸。ZIF-8 是一種典型的類沸石咪唑骨架材料 (ZIF),可作爲自體模板,進一步鍛燒加以碳化得到摻氮之多孔碳材。本研究將ZIF-8 於不同溫度下進行碳化, 以探討碳化溫度對碳材之氮原子組態的影響。我們也研究了各種反應參數,包含溶劑,雙氧水濃度,反應溫度和時間對MA產率的影響。透過NC-900催化劑,雙氧水 (35 wt%)作為氧化劑,在80 °C 下,我們可在5 小時內達成最高61% 之馬來酸產率。我們推測此反應之路徑是透過氧化開環,形成5-羥基-2(5H)-呋喃酮 (5-hydroxy-furan-2(5H)-one)作為主要中間產物,隨後進行Baeyer-Villiger 氧化,重排步驟和水解,進而得到馬來酸 。 | zh_TW |
| dc.description.abstract | Maleic acid (MA) and maleic anhydride are important C4 chemical intermediates to produce high value-added chemicals. In industry, maleic anhydride is commercially
produced through petrochemical route by the oxidation of the exhaustible and non-renewable feedstocks, n-butane and benzene. On the other hand, the renewable resource, furfural derived from lignocellulosic biomass, has been recognized as a potential bio-based platform chemical to produce MA through catalytic oxidation. Until now, the conversion of furfural to MA has been mainly catalyzed by an acidic catalyst, which exhibited several drawbacks. Here, we report the first acid-free system for furfural to MA conversion, by using the nitrogen-doped nanoporous carbon material (NC) derived from zeolitic imidazolate frameworks (ZIF-8). The synthesized ZIF-8 was undergoing direct carbonization at different temperatures in order to investigate the effect of carbonization temperature on nitrogen configuration in the resulted carbon materials. The effect of reaction parameters, including H2O2 concentration, solvent, reaction temperature and time were systematically studied. A MA yield as high as 61 % was achieved over NC-900 catalyst at 80 °C in 5 hours, assisted by 35 wt% H2O2. The kinetics study indicates that the mechanism was via the oxidative ringopening reaction and formation 5-hydroxy-furan-2(5H)-one as the main intermediate, following by Baeyer-Villiger oxidation, rearrangement steps, and hydrolysis to form MA. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:35Z (GMT). No. of bitstreams: 1 ntu-108-R06524098-1.pdf: 5364658 bytes, checksum: b1d5e54dc0d8436a7af7a9f76f4a6b6c (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 ......................................................................................................................................... i
Abstract ................................................................................................................................. ii 摘要 ....................................................................................................................................... iii Table of Content .................................................................................................................. iv List of Figures ...................................................................................................................... vi List of Tables ...................................................................................................................... viii 1. Introduction ................................................................................................................... 1 1.1. Maleic anhydride and maleic acid ........................................................................ 1 1.2. Furfural ................................................................................................................... 1 1.3. The metal-free catalyst .......................................................................................... 4 1.3.1. Nitrogen-doped nanoporous carbon ............................................................... 6 1.3.2. Metal-organic framework (MOFs) ................................................................. 7 1.3.3. MOFs-derived nitrogen-doped nanoporous carbon .................................... 10 1.3.4. ZIFs-derived nitrogen-doped nanoporous carbon ...................................... 11 2. Literature review ......................................................................................................... 16 3. Objectives ..................................................................................................................... 20 4. Experimental................................................................................................................ 21 4.1. Chemicals and materials ..................................................................................... 21 4.2. Equipment ............................................................................................................ 22 4.3. Preparation of catalyst ........................................................................................ 23 4.3.1. Synthesis of ZIF-8-derived N-doped carbon material ................................ 23 4.3.2. Synthesis of melamine-derived N-doped carbon ......................................... 25 4.3.3. Synthesis of biomass-derived N-doped carbon ............................................ 25 4.4. Furfural to maleic acid reaction ......................................................................... 26 4.5. Characterization of products .............................................................................. 28 4.6. Characterization of catalyst ................................................................................ 29 Scanning electron microscope (SEM) .............................................................. 29 X-ray diffractometer (XRD) ............................................................................. 29 Specific Surface Area & Pore Size Distribution Analyzer ............................ 29 Elemental analyzer (EA) ................................................................................... 29 X-ray photoelectron Spectroscopy (XPS) ....................................................... 29 4.7. Product purification ............................................................................................ 30 5. Results and Discussion ................................................................................................ 31 5.1. Materials Characterization ................................................................................. 31 5.1.1 SEM analysis ................................................................................................... 31 5.1.2 XRD analysis ................................................................................................... 33 5.1.3 Specific surface area analysis ........................................................................ 35 5.1.4 Elemental analysis (EA) ................................................................................. 37 5.1.5 X-ray Photoelectron spectroscopy (XPS) ..................................................... 38 5.2. Reaction optimization .......................................................................................... 40 5.2.1. The effect of catalyst ....................................................................................... 40 5.2.2. The effect of solvent ........................................................................................ 46 5.2.3. The effect of H2O2 concentration ................................................................... 47 5.2.4. The effect of temperature............................................................................... 49 5.2.5. The effect of reaction time ............................................................................. 50 5.3. Recycle test ........................................................................................................... 52 5.4. Product purification ............................................................................................ 55 5.5. Reaction mechanism studies ............................................................................... 56 5.6. The effect of different furan substrate ............................................................... 61 5.7. The effect of different sources-derived NC ........................................................ 63 6. Conclusions .................................................................................................................. 66 7. Future Prospect ........................................................................................................... 67 8. References .................................................................................................................... 68 Appendix ............................................................................................................................. 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氧化 | zh_TW |
| dc.subject | 糠醛 | zh_TW |
| dc.subject | 馬來酸 | zh_TW |
| dc.subject | 摻氮碳材 | zh_TW |
| dc.subject | 類沸石咪唑骨架 | zh_TW |
| dc.subject | furfural | en |
| dc.subject | maleic acid | en |
| dc.subject | oxidation | en |
| dc.subject | nitrogen-doped carbon | en |
| dc.subject | zeolitic imidazolate frameworks | en |
| dc.title | 合成類沸石咪唑骨架材料(ZIF-8)衍生之摻氮多孔碳材並應用於糠醛至馬來酸之轉化 | zh_TW |
| dc.title | Synthesis of ZIF-8-Derived Nitrogen-Doped Nanoporous Carbon for Furfural-to-Maleic Acid Conversion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉賜健;鍾博文;?超華;黃振煌 | zh_TW |
| dc.contributor.oralexamcommittee | Alex Yip;Cedric Po-Wen Chung;Daniel Chiu-Wa Tsang;Tony Jen-Huang Huang | en |
| dc.subject.keyword | 馬來酸,糠醛,氧化,摻氮碳材,類沸石咪唑骨架, | zh_TW |
| dc.subject.keyword | maleic acid,furfural,oxidation,nitrogen-doped carbon,zeolitic imidazolate frameworks, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU201901225 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2024-07-10 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
