Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorLi-Fong Linen
dc.contributor.author林立峰zh_TW
dc.date.accessioned2021-06-17T07:24:51Z-
dc.date.available2019-07-17
dc.date.copyright2019-07-17
dc.date.issued2018
dc.date.submitted2019-06-28
dc.identifier.citation1.Zhao, Y.G., C.K.C. Wong, and M.H. Wong, Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on asian countries. Chemosphere, 2012. 89(4): p. 355-368.
2.Jian, J.M., Y. Guo, L. Zeng, L. Liang-Ying, X. Lu, F. Wang, and E.Y. Zeng, Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environment International, 2017. 108: p. 51-62.
3.Ye, F., Y. Zushi, and S. Masunaga, Survey of perfluoroalkyl acids (PFAAs) and their precursors present in japanese consumer products. Chemosphere, 2015. 127: p. 262-268.
4.Niu, J., Y. Li, E. Shang, Z. Xu, and J. Liu, Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 2016. 146: p. 526-538.
5.Du, Z., S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, and G. Yu, Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. Journal of Hazardous Materials, 2014. 274: p. 443-454.
6.Lee, Y.C., P.Y. Wang, S.L. Lo, and C.P. Huang, Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 2017. 173: p. 280-285.
7.Yang, B., Y. Han, G. Yu, Q. Zhuo, S. Deng, J. Wu, and P. Zhang, Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chemical Engineering Journal, 2016. 303: p. 384-390.
8.Chen, M.H., E.H. Ha, T.W. Wen, Y.N. Su, G.W. Lien, C.Y. Chen, P.C. Chen, and W.S. Hsieh, Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLOS ONE, Vol. 7. 2012. e42474.
9.Viberg, H. and P. Eriksson, Chapter 47 - perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), in Reproductive and developmental toxicology, R.C. Gupta, Editor. 2011, Academic Press: San Diego. p. 623-635.
10.Nakayama, S., K. Harada, K. Inoue, K. Sasaki, B. Seery, N. Saito, and A. Koizumi, Distributions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in japan and their toxicities. Environmental Science & Technology, Vol. 12. 2005. 293-313.
11.Dietz, R., R. Bossi, F.F. Rigét, C. Sonne, and E.W. Born, Increasing perfluoroalkyl contaminants in east greenland polar bears (ursus maritimus): A new toxic threat to the arctic bears. Environmental Science & Technology, 2008. 42(7): p. 2701-2707.
12.Olsen, G.W., J.M. Burris, J.E. David, W.F. John, M.S. Andrew, J.L. Butenhoff, and L.R. Zobel, Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives, 2007. 115(9): p. 1298-1305.
13.Seacat, A.M., P.J. Thomford, K.J. Hansen, L.A. Clemen, S.R. Eldridge, C.R. Elcombe, and J.L. Butenhoff, Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 2003. 183(1): p. 117-131.
14.Johansson, N., A. Fredriksson, and P. Eriksson, Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. NeuroToxicology, 2008. 29(1): p. 160-169.
15.Case, M.T., R.G. York, and M.S. Christian, Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. International Journal of Toxicology, 2001. 20(2): p. 101-109.
16.Wang, Y., H. Lin, F. Jin, J. Niu, J. Zhao, Y. Bi, and Y. Li, Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of The Total Environment, 2016. 557-558: p. 542-550.
17.Braeken, L., B. Bettens, K. Boussu, P. Van der Meeren, J. Cocquyt, J. Vermant, and B. Van der Bruggen, Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. Journal of Membrane Science, 2006. 279(1): p. 311-319.
18.Tang, C.Y., Q.S. Fu, A.P. Robertson, C.S. Criddle, and J.O. Leckie, Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 2006. 40(23): p. 7343-7349.
19.Fujii, S., C. Polprasert, S. Tanaka, N. Lien, and Y. Qiu, New pops in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper. Journal of Water Supply: Research and Technology - Aqua ,Vol. 56. 2007.
20.Hori, H., A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa, and R. Arakawa, Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 2005. 39(7): p. 2383-2388.
21.Stevenson, D.P., The strengths of chemical bonds. Journal of the American Chemical Society, 1955. 77(8): p. 2350-2350.
22.Chen, J. and P. Zhang, Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate.Water science and technology,Vol. 54. 2006. 317-25.
23.Ratoarinoro, F. Contamine, A.M. Wilhelm, J. Berlan, and H. Delmas, Activation of a solid-liquid chemical reaction by ultrasound. Chemical Engineering Science, 1995. 50(3): p. 554-558.
24.Chemat, F., P.G.M. Teunissen, S. Chemat, and P.V. Bartels, Sono-oxidation treatment of humic substances in drinking water. Ultrasonics Sonochemistry, 2001. 8(3): p. 247-250.
25.Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, and Y. Maeda, Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 2005. 39(9): p. 3388-3392.
26.Khuntia, S., S.K. Majumder, and P. Ghosh, Microbubble-aided water and wastewater purification: A review. Reviews in Chemical Engineering, 2012. 28(4-6): p. 191-221.
27.Yang, X., X. Huang, and T. Qiu, Recovery of zinc from cyanide tailings by flotation. Minerals Engineering, 2015. 84: p. 100-105.
28.Wang, L., Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 2015. 70: p. 77-91.
29.Shammas, N. and G. F. Bennett, Principles of air flotation technology. 2010. 1-47.
30.Saththasivam, J., K. Loganathan, and S. Sarp, An overview of oil–water separation using gas flotation systems. Chemosphere, 2016. 144: p. 671-680.
31.Vik, E.A., D.A. Carlson, A.S. Eikum, and E.T. Gjessing, Electrocoagulation of potable water. Water Research, 1984. 18(11): p. 1355-1360.
32.Cheng, R.L., Group interest in treating words borrowed into mandarin and taiwanese. Anthropological Linguistics, 1985. 27: p. 177-189.
33.Mollah, M.Y.A., R. Schennach, J.R. Parga, and D.L. Cocke, Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 2001. 84(1): p. 29-41.
34.Endyuskin, P.N., S.V. Selezenkin, and K.M. Dyumaev, J. Appl. Chem. (USSR), 1983. 56: p. 1100.
35.Wilcock, A.E. and S.P. Hay, Can. Textile J., 1991. 108(4): p. 37.
36.Wilcock, A., J. Tebbens, F. Fuss, J. Wanger, and M. Brewster, J. Text. Chem. Color, 1992. 24: p. 29.
37.Everything you want to know about coagulation & flocculation. 1993, Staunton, Va.: Zeta-Meter, Inc.
38.Liu, Y., X.M. Hu, Y. Zhao, J. Wang, M.X. Lu, F.H. Peng, and J. Bao, Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 2018. 201: p. 303-309.
39.Xiao, F., B. Zhang, and C. Lee, Effects of low temperature on aluminum(iii) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 2008. 20(8): p. 907-914.
40.Degen, A. and M. Kosec, Effect of ph and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society, 2000. 20(6): p. 667-673.
41.Wang, P., R. Jiao, L. Liu, F. Xiao, G. An, and D. Wang, Optimized coagulation pathway of al13: Effect of in-situ aggregation of al13. Chemosphere, 2019.
42.Soares, B.M.C., S.T. Dantas, and C.A.R. Anjos, Corrosion of aluminum for beverage packaging in acidic media containing chlorides and copper ions. Journal of Food Process Engineering, 2017. 40(6): p. 8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73254-
dc.description.abstract全氟辛酸(PFOA)為一工業合成之介面活性劑,常被廣泛地應用當作抗油抗水的塗料。PFOA在自然環境中十分穩定,不易被降解,同時具有生物累積性與生物毒性,在國際間已引起高度的關注與管制,目前已有許多研究關於PFOA的去除與降解,如超聲波、光降解、過硫酸鹽催化、過濾與吸附等等。其中,電化學與浮除法是反應時間較短、且效果顯著的方法。
本研究透過電混凝反應中的犧牲陽極釋出金屬離子,結合混凝與曝氣浮除快速將汙染物去除,並在過程中探討pH值的變化。研究顯示,在鐵、鋁、鋅三者金屬中,鋅的處理效果最佳,隨電流密度上升,反應速度也會增加,由於鋅金屬形成之氫氧化物具有良好的架橋吸附效果,因此能顯著去除溶液中的PFOA,在電流密度37.5 mA/cm2 下,鋅金屬電極可在2分鐘內達到98 %的PFOA去除效果;電流密度為6.25 mA/cm2 時,反應也在12分鐘達到97 %的去除效果。
在pH值對浮除效果的影響的實驗中,測試不同pH的條件下,添加Al金屬進行曝氣。結果顯示,Al金屬在pH=5時因生成帶大量正電的Al13物質,與帶負電之PFOA形成穩定的氣泡被曝氣至表面,曝氣5分鐘後可達98%的去除率。
電混凝浮除法中,電解質濃度由2 mM提高至20 mM,可些微提高去除率,但操作電壓由20 V下降至2.5 V,可有效降低能耗;此外,反應會受陰離子種類的影響,溶液中若存在負電性越高之陰離子,會使去除效果明顯降低。
反應產生之膠羽透過傅利葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR)分析,於穿透光譜的結果中可發現C-F2與C-F3之特徵峰值出現,說明PFOA被吸附於膠羽中,以達去除效果。證實透過犧牲陽極產出之金屬離子能有效去除水中PFOA。
zh_TW
dc.description.abstractPerfluorooctanoic acid (PFOA) is an industrial synthetic surfactant which is widely used as an oil and water resistant coating. PFOA is very stable in the natural environment, which means it cannot be degraded easily. Meanwhile, a lot of countries have paid high attention to PFOA due to its bioaccumulation and biological toxicity. There have been many studies on the removal and degradation of PFOA, such as ultrasound, photolysis, persulfate catalysis, filtration and adsorption, and so on. The method combined with electrochemistry and floatation is effective and efficient way to remove PFOA in water.
In this study, the metal ions were released by the sacrificial anode in the electrocoagulation reaction. By using electrocoagulation and floatation simultaneously, contaminants could be removed rapidly. Also, the pH value was discussed in the process. Studies have shown that among the metals of iron, aluminum and zinc, zinc has the best efficiency. As the current density increased, the reaction rate accelerated at same time. Since the hydroxide formed by zinc metal had an excellent performance on bridging adsorption , At a current density of 37.5 mA/cm2, the zinc metal electrode achieved 98% removal rate of PFOA in 2 minutes. At a current density of 6.25 mA/cm2, the reaction could reach 97 % removal rate in 12 minutes respectively.
In the experiment of the effect of pH on the floating, aluminum ions were added for aeration under conditions of different pH values. The results showed that the Al metal formed Al13 substance at pH=5, which had a large amount of positive charges. Al13 formed a stable bubble with the negatively charged contaminant such as PFOA, then aerated to the surface, reaching about 98 % removal rate after 5 minutes of aeration. Moreover, raising the electrolyte concentration could both increase the removal efficiency and lower the power demand. In addition, the reaction was affected by the type of anions. The presence of an anion with higher negative charges resulted in a significant reduction in the removal rate.
The flocs produced by the reaction were analyzed by Fourier-transform infrared spectroscopy (FTIR). The peaks of C-F2 and C-F3 were found in the results of the spectra, indicating that PFOA was adsorbed in the flocs. It was confirmed that the metal ions produced by the sacrificial anode can effectively remove the PFOA in the water.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:24:51Z (GMT). No. of bitstreams: 1
ntu-107-R06541104-1.pdf: 3011777 bytes, checksum: 2ada6c481cdda93a9db3aa4fc2ed5814 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 5
2.1 PFOA的特性與危害 5
2.1.1全氟化合物之基本性質 5
2.1.2全氟化合物之歷史背景 6
2.1.3全氟化合物之危害特性 7
2.1.4全氟化合物之處理方法 9
2.2 曝氣浮除 12
2.2.1 浮除技術原理 12
2.3 電解反應 15
2.3.1 電解反應原理 15
2.3.2 法拉第定律 16
2.3.3 電流效率 16
2.4 電混凝法 17
2.4.1 電混凝介紹 17
2.4.2 電混凝與傳統混凝的比較 18
2.4.3 電混凝法應用於去除全氟化合物 21
第三章 研究方法 26
3.1 實驗研究架構 26
3.2 實驗藥品 29
3.3 實驗設備與儀器 30
3.4 實驗步驟 32
3.4.1實驗架設 32
3.4.2 PFOA電混凝浮除試驗 33
3.4.3鋁對PFOA浮除之效果 33
3.4.4陰離子與電解質對電混凝浮除之影響 34
3.4.5膠羽浮沫之FTIR特性分析 34
3.5 分析方法 35
第四章 結果與討論 38
4.1 PFOA之背景試驗 38
4.1.1 PFOA 曝氣實驗 38
4.1.2 未添加電解質之PFOA電混凝浮除試驗 38
4.2電極種類對PFOA去除率之影響 40
4.2.1 鋁金屬電極 40
4.2.2鋅金屬電極 42
4.2.3 鐵金屬電極 44
4.3電流密度對PFOA去除率之影響 46
4.4鋁離子曝氣浮除PFOA之試驗 48
4.5陰離子與電解質濃度對PFOA去除率之影響 50
4.5.1 陰離子對去除率的影響 50
4.5.2 電解質濃度對去除率的影響 51
4.6膠羽浮沫之特性分析 53
第五章 結論與建議 56
5.1 結論 56
5.2 建議 57
參考文獻 58
附錄 62
dc.language.isozh-TW
dc.title以犧牲陽極加藥浮除全氟辛酸之研究zh_TW
dc.titleRemoving PFOA by Flotation Using Sacrificial Anodeen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林進榮,劉雅瑄
dc.subject.keyword全氟辛酸,電混凝,曝氣浮除,犧牲陽極,zh_TW
dc.subject.keywordPerfluorooctanoic acid,electrocoagulation,floatation,sacrificial anode,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201901122
dc.rights.note有償授權
dc.date.accepted2019-07-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved