Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73215
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許少瑜(Shao-Yiu Hsu)
dc.contributor.authorJung-Dong Leeen
dc.contributor.author李榮棟zh_TW
dc.date.accessioned2021-06-17T07:22:52Z-
dc.date.available2021-02-26
dc.date.copyright2021-02-26
dc.date.issued2021
dc.date.submitted2021-02-19
dc.identifier.citationBeven, K. J. (2020), A history of the concept of time of concentration, Hydrol Earth Syst Sc, 24(5), 2655-2670, doi: 10.5194/hess-24-2655-2020.
Darcy.H (1856), Les fontaines publiques de la ville de Dijon: exposition et application.
Hassanizadeh, S. M. a. G., W. G. (1990), Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour, 13,, 169-186.
Kienzler, P. M., F. Naef (2008), Subsurface storm flow formation at different hillslopes and implications for the ’old water paradox’, Hydrological Processes, 22(1), 104-116, doi: 10.1002/hyp.6687.
Richards, L. A. (1931), Capillary conduction of liquids through porous mediums, Physics-J Gen Appl P, 1(1), 318-333, doi: 10.1063/1.1745010.
Sakaki, T., D. M. O'Carroll, T. H. Illangasekare (2010), Direct Quantification of Dynamic Effects in Capillary Pressure for Drainage-Wetting Cycles, Vadose Zone Journal, 9(2), 424-437, doi: 10.2136/vzj2009.0105.
Scaini, A., M. Audebert, C. Hissler, F. Fenicia, L. Gourdol, L. Pfister, K. J. Beven (2017), Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time-lapse ERT, J Hydrol, 546, 28-43,doi:10.1016/j.jhydrol.2016.12.035.
Scaini, A., C. Hissler, F. Fenicia, J. Juilleret, J. F. Iffly, L. Pfister, K. Beven (2018), Hillslope response to sprinkling and natural rainfall using velocity and celerity estimates in a slate-bedrock catchment, J Hydrol, 558, 366-379,doi:10.1016/j.jhydrol.2017.12.011.
Topp, G. C., A. Klute, D. B. Peters (1967), Comparison of Water Content-Pressure Head Data Obtained by Equilibrium Steady-State and Unsteady-State Methods, Soil Sci Soc Am Pro, 31(3), 312- , doi: 10.2136/sssaj1967.03615995003100030009x.
Topp, G. C., J. L. Davis, A. P. Annan (1980), Electromagnetic Determination of Soil-Water Content - Measurements in Coaxial Transmission-Lines, Water Resour Res, 16(3), 574-582, doi: 10.1029/WR016i003p00574.
van Genuchten, M. T. (1980), A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci Soc Am J, 44(5), 892-898,doi:10.2136/sssaj1980.03615995004400050002x.
Wei, Y. B., K. P. Chen, J. C. Wu (2020), Estimation of the Critical Infiltration Rate for Air Compression During Infiltration, Water Resour Res,56(3),doi:10.1029/2019WR026410.
林宏彥 (2019), 利用實驗與數值方法研究河川底床阻水層對入滲率及非飽和區域發展的影響, 碩士論文, doi: 10.6342/NTU201900641.
曾燕翔, 邱永嘉 (2017), 排水過程中土壤保水曲線於動態效應影響之探討, 農業工程學報, 63(1), 50-58.
萬鑫森 (1987), 基礎土壤物理學, 國立編譯館.
蔡義誌 (2008), 不飽和土壤水力傳導度與介質孔隙分佈關係之研究, 國立中興大學水土保持學系博士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73215-
dc.description.abstract非飽和土壤層是一個複雜的多孔介質系統,土壤的水力特性極易受到其複雜結構與觀測尺度的影響。近年來,小型沙箱實驗已經證實動態效應對於保水曲線的影響,但尚未釐清是否受觀測尺度影響。本研究透過邊界壓力條件控制大型入滲儀內部土壤水分變化速率,並利用埋設的張力計與時域反射計(TDR),量測在動態與靜態排水與汲水過程中的保水曲線。實驗結果顯示入滲儀內淺層土壤在相同張力下,動態排水過程可以保有比靜態過程較高的體積含水量,也就是所謂的毛細壓力的動態效應(dynamic effect)。但該效應隨土壤深度遞減。另一方面,非飽和層土壤水流速(velocity)與舊水響應波速(celerity)被認為會顯著影響新舊水(入滲水與殘餘水)互動、降雨-逕流機制與非飽和層的物質傳輸,但相關機制卻尚待釐清。搭配含水量與溫度量測,發現在入滲過程中,濕潤鋒的移動受供水機制與邊界條件的影響,含水量的資料顯示空氣侷限導致濕潤鋒面含水量降低。實驗的溫度資料顯示淺層時熱水(新水)大部分與含水量變化訊號重疊,但在中層以及深層熱水的訊號落後於冷水(舊水)的訊號,表示不同深度溼鋒面移動時包含的新水以及舊水比例有顯著的不同,同時舊水響應波速可達新水水分流速的兩倍以上。上述研究成果,將有助於量化觀測尺度對於動態毛細壓力的影響,並進一步釐清非飽和層土壤水的流速與舊水響應波速的不同。zh_TW
dc.description.abstractThe unsaturated soil is a complex porous media system, and the soil hydraulic properties are easily affected by its complex structure and observation scale. In recent years, small-scale sandbox experiments have confirmed the influence of dynamic effects on the water retention curve, but it has not yet been clarified whether it is affected by the observation scale. In this study, we control the soil moisture change rate inside the large lysimeter by the different boundary pressure conditions. And the tensiometer and time domain reflectometry (TDR) were used to measure the water retention curve during the dynamic and static drainage and imbibition processes. The experimental results show that the shallow soil layer during the dynamic drainage process can retain a higher volumetric water content than during the static process, which is so-called dynamic effect of capillary pressure. But this effect decreases with the soil depth. On the other hand, the soil water velocity and celerity of the unsaturated soil are considered to significantly affect the interaction between the new and old water (infiltration water and residual water), the rainfall-runoff mechanism and the solute transport in the unsaturated zone. The relevant mechanism has yet to be clarified. We used the changes in water content and soil temperature to detect the wetting front movement during the infiltration and the influence of boundary conditions. This study also observed that the water content of the wetting front decreases under the air-confined condition. The soil temperature data shows that the hot water (new water) signal observed from the upper sensors mostly overlaps with the water content change signal, but the hot water signal in the middle and deep area lags behind the cold water (old) signal. It implies that when the wetting front moves, the ratio of new and old water at different depths is significantly different. At the same time, the old water celerity can reach more than twice the velocity of the new water. The abovementioned findings will help quantify the observation scale influence on dynamic capillary pressure and further clarify the flow velocity and celerity of soil water in the unsaturated zone.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:22:52Z (GMT). No. of bitstreams: 1
U0001-1902202119285800.pdf: 9230717 bytes, checksum: 23162d9fa8287d17ae9833e9762ce153 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 #
中文摘要 i
ABSTRACT ii
CONTENTS目錄 iv
LIST OF FIGURES viii
第1章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 文獻回顧 3
1.3.1 動態毛細壓 3
1.3.2 速度(velocity)以及舊水響應波速(celerity) 8
1.4 研究架構 12
第2章 相關理論 14
2.1 達西定律(Darcy’s law) 14
2.2 理查方程式(Richards’ equation) 15
2.3 靜態與動態毛細壓 17
2.4 臨界入滲(critical inflitration) 19
第3章 實驗材料與方法 21
3.1 入滲儀 21
3.2 實驗設備 22
3.2.1 時域反射儀(Time Domain Reflectometry, TDR) 22
3.2.2 土壤水分張力計(Tensiometer) 23
3.2.3 葉片式流量計 24
3.2.4 渦流式流量計 24
3.2.5 溫鹽水位計(CTD-Diver) 25
3.2.6 降雨機(Rain machine) 26
3.3 實驗儀器配置 28
3.4 水力傳導度實驗 30
3.5 壓力鍋保水曲線 31
3.6 入滲儀動態-靜態排水實驗 34
3.7 入滲儀動態-靜態汲水實驗 35
3.8 入滲儀單點注水實驗 37
3.9 入滲儀降雨實驗 38
第4章 結果與討論 40
4.1 入滲儀排水過程水力特性資料 40
4.1.1 靜態排水含水量、張力變化 40
4.1.2 動態排水含水量、張力變化 41
4.2 入滲儀汲水過程水力特性資料 43
4.2.1 靜態汲水含水量、張力變化 43
4.2.2 動態汲水含水量、張力變化 44
4.3 入滲儀動態及靜態保水曲線 46
4.3.1 繪製入滲儀保水曲線 46
4.3.2 不同深度動態、靜態排水保水曲線比較 48
4.3.3 不同深度動態、靜態汲水保水曲線比較 51
4.3.4 入滲儀川砂遲滯現象 54
4.4 新注水事件實驗結果 56
4.4.1 兩種注水方法 56
4.4.2 單點注水張力計判讀 57
4.4.3 單點注水TDR判讀與地下水位不均勻抬升 58
4.4.4 單點注水入流口垂直深度-不同流量體積含水量反應 60
4.4.5 單點注水入流口垂直深度-高流量體積含水量反應 62
4.4.6 均勻降雨TDR判讀 63
4.4.7 均勻降雨入流口、中間垂直深度-弱降雨TDR反應 64
4.5 舊水移動 66
4.5.1 注水均勻程度比較 66
4.5.2 空氣侷限理論分析 68
4.5.3 入流口垂直深度溫度以及水分訊號分析 69
4.5.4 中間垂直深度溫度以及水分訊號分析 71
4.5.5 入流口垂直深度強弱降雨水分訊號分析 73
4.5.6 中間垂直深度強弱降雨水分訊號分析 75
4.5.7 新水取代孔隙水-舊水置換(飽和狀態) 77
4.5.8 舊水移動訊號整理 81
第5章 研究結論 84
Reference 86
dc.language.isozh-TW
dc.subject未飽和層zh_TW
dc.subject新舊水互動zh_TW
dc.subject濕潤鋒面zh_TW
dc.subject土壤保水曲線zh_TW
dc.subjectwater retention curveen
dc.subjectold-new water interactionen
dc.subjectunsaturated zoneen
dc.subjectwetting fronten
dc.title利用大型入滲儀觀測動態土壤水力特性:動態毛細壓力、流速與舊水響應波速
zh_TW
dc.titleUsing Large-Scale Lysimeter to Monitor Dynamic Soil Hydraulic Properties:Dynamic Capillary Pressure, Velocity, and Celerityen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳主惠(Zhu-Hui Chen),邱永嘉(Yung-Chia Chiu),陳瑞昇(Rui-Sheng Chen)
dc.subject.keyword未飽和層,土壤保水曲線,濕潤鋒面,新舊水互動,zh_TW
dc.subject.keywordunsaturated zone,water retention curve,wetting front,old-new water interaction,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202100752
dc.rights.note有償授權
dc.date.accepted2021-02-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1902202119285800.pdf
  未授權公開取用
9.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved