Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73208
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李克強
dc.contributor.authorTuan Jen Hungen
dc.contributor.author段人洪zh_TW
dc.date.accessioned2021-06-17T07:22:32Z-
dc.date.available2019-07-11
dc.date.copyright2019-07-11
dc.date.issued2019
dc.date.submitted2019-07-03
dc.identifier.citation1. Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. Electrokinetic and Colloid Transport Phenomena. 2005: John Wiley & Sons, Inc.
2. Shaw, D.J., Introduction to Colloid and Surface Chemistry. Introduction to Colloid and Surface Chemistry (Fourth Edition), ed. D.J. Shaw. 1992, Oxford: Butterworth-Heinemann.
3. Hunter, R., Foundations of Colloid Science. Hunter, RJ, Foundations of Colloid Science. Vol. 1. 1987: Oxford University Press.
4. Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 1941. 14(6): p. 633-662.
5. Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. 1948: Elsevier New York.
6. Everett, D.H. and D. Everett, Basic principles of colloid science. Vol. 144. 1988: Royal Society of Chemistry London.
7. Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233.
8. Gouy, G., Constitution of the electric charge at the surface of an electrolyte. Journal of Physics, 1910. 9(4): p. 457-467.
9. Chapman, D.L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481.
10. 劉陽橋, 奈米粉體的分散及表面改性. 2005: 五南圖書出版股份有限公司.
11. Fuoss, R.M., POLYELECTROLYTES. Science, 1948. 108(2812): p. 545-550.
12. Darcy, H., Les Fontaines Publiques de la Ville de Dijon. 1856, Paris: Dalmont.
13. Brinkman, H.C., A CALCULATION OF THE VISCOUS FORCE EXERTED BY A FLOWING FLUID ON A DENSE SWARM OF PARTICLES. Applied Scientific Research Section a-Mechanics Heat Chemical Engineering Mathematical Methods, 1947. 1(1): p. 27-34.
14. Debye, P. and A.M. Bueche, Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. The Journal of Chemical Physics, 1948. 16: p. 573.
15. Kirkwood, J.G. and J. Riseman, The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. The Journal of Chemical Physics, 1948. 16: p. 565.
16. Felderhof, B. and J. Deutch, Frictional properties of dilute polymer solutions. I. Rotational friction coefficient. The Journal of Chemical Physics, 1975. 62: p. 2391.
17. Dukhin, S.S., et al., On the applicability of the Brinkman equation in soft surface electrokinetics. Journal of Colloid and Interface Science, 2010. 350(1): p. 1-4.
18. Overbeek, J.T.G., Polyelectrolytes, past, present and future, in Macromolecular Chemistry–11. 1977, Elsevier. p. 91-101.
19. Duval, J.F., et al., Humic substances are soft and permeable: evidence from their electrophoretic mobilities. Environmental science & technology, 2005. 39(17): p. 6435-6445.
20. He, Y.Y. and E. Lee, Electrophoresis in concentrated dispersions of charged porous spheres. Chemical Engineering Science, 2008. 63(23): p. 5719-5727.
21. Huang, C.H., H.P. Hsu, and E. Lee, Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Phys Chem Chem Phys, 2012. 14(2): p. 657-67.
22. Mannion, J. and H. Craighead, Nanofluidic structures for single biomolecule fluorescent detection. Biopolymers, 2007. 85(2): p. 131-143.
23. Bell, D. and P. Dunnill, The influence of precipitation reactor configuration on the centrifugal recovery of isoelectric soya protein precipitate. Biotechnology and bioengineering, 1982. 24(11): p. 2319-2336.
24. Oosawa, F., Polyelectrolytes, in Polyelectrolytes. 1971, Marcel Dekker.
25. Hunter, R., Behaviour of colloidal dispersions. Foundations of colloid science, 1989. 1: p. 72-73.
26. Masliyah, J., Electrokinetic transport phenomena Alberta Oil Sands Technology and Research Authority. Alberta, Canada, 1994.
27. Hunter, R.J., Zeta potential in colloid science: principles and applications. Vol. 125. 1981: Academic press London.
28. Van de Ven, T.G., Colloidal hydrodynamics. 1989: Academic Press.
29. Dukhin, S. and B. Derjaguin, Surface and Colloid Science. by E. Matjevic, Wiley, New York, 1974. 7: p. 36.
30. Russel, W.B., The dynamics of colloidal systems. 1987: Univ of Wisconsin Pr.
31. Helmholtz, H.V., Studien über electrische Grenzschichten. Annalen der Physik, 1879. 243(7): p. 337-382.
32. Gouy, G., Constitution of the electric charge at the surface of an electrolyte. J. phys, 1910. 9(4): p. 457-467.
33. Chapman, D.L., LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1913. 25(148): p. 475-481.
34. Stern, O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21‐22): p. 508-516.
35. Overbeek, J.T.G., Quantitative interpretation of the electrophoretic velocity of colloids. Advances in colloid Science, 1950. 3: p. 97.
36. Booth, F. The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1950. The Royal Society.
37. van Smoluchowski, M., Versuch einer mathematischen theorie der koagulation kinetic kolloider losungen. Zeit. Phys. Chem, 1917. 92: p. 129-168.
38. Hückel, E., Die kataphorese der kugel. Phys. Z, 1924. 25: p. 204-210.
39. Henry, D. The cataphoresis of suspended particles. Part I. The equation of cataphoresis. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1931. The Royal Society.
40. Wiersema, P., A. Loeb, and J.T.G. Overbeek, Calculation of the electrophoretic mobility of a spherical colloid particle. Journal of Colloid and Interface Science, 1966. 22(1): p. 78-99.
41. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626.
42. Ohshima, H., Electrophoresis of soft particles. Advances in colloid and interface science, 1995. 62(2): p. 189-235.
43. Ohshima, H., T.W. Healy, and L.R. White, Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983. 79(11): p. 1613-1628.
44. O'Brien, R.W. and R.J. Hunter, The electrophoretic mobility of large colloidal particles. Canadian Journal of Chemistry, 1981. 59(13): p. 1878-1887.
45. Levine, S. and G.H. Neale, The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis. Journal of Colloid and Interface Science, 1974. 47(2): p. 520-529.
46. Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the physical society of Japan, 1959. 14(4): p. 527-532.
47. Kozak, M.W. and E.J. Davis, Electrokinetics of concentrated suspensions and porous media: I. Thin electrical double layers. Journal of colloid and interface science, 1989. 127(2): p. 497-510.
48. Kozak, M.W. and E.J. Davis, Electrokinetics of concentrated suspensions and porous media: 2. Moderately thick electrical double layers. Journal of colloid and interface science, 1989. 129(1): p. 166-174.
49. Ohshima, H., Electrophoretic Mobility of Spherical Colloidal Particles in Concentrated Suspensions. Journal of Colloid and Interface Science, 1997. 188(2): p. 481-485.
50. Lee, E., J.W. Chu, and J.P. Hsu, Electrophoretic Mobility of a Concentrated Suspension of Spherical Particles. J Colloid Interface Sci, 1999. 209(1): p. 240-246.
51. Zholkovskiy, E.K., et al., Hydrodynamic cell model: general formulation and comparative analysis of different approaches. Canadian Journal of Chemical Engineering, 2007. 85(5): p. 701-701.
52. Zholkovskij, E.K., et al., Electrokinetic phenomena in concentrated disperse systems: general problem formulation and spherical cell approach. Advances in colloid and interface science, 2007. 134: p. 279-321.
53. Levine, S., G. Neale, and N. Epstein, The prediction of electrokinetic phenomena within multiparticle systems: II. Sedimentation potential. Journal of Colloid and Interface Science, 1976. 57(3): p. 424-437.
54. Dukhin, A.S., V. Shilov, and Y. Borkovskaya, Dynamic electrophoretic mobility in concentrated dispersed systems. Cell model. Langmuir, 1999. 15(10): p. 3452-3457.
55. Lee, E., F.Y. Yen, and J.P. Hsu, Dynamic electrophoretic mobility of concentrated spherical dispersions. Journal of Physical Chemistry B, 2001. 105(30): p. 7239-7245.
56. Carrique, F., et al., Influence of cell-model boundary conditions on the conductivity and electrophoretic mobility of concentrated suspensions. Advances in colloid and interface science, 2005. 118(1): p. 43-50.
57. Carrique, F., F. Arroyo, and A. Delgado, Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic Stern layer on electrophoresis and DC conductivity. Journal of colloid and interface science, 2001. 243(2): p. 351-361.
58. Hermans, J.J., Sedimentation and electrophoresis of porous spheres. Journal of Polymer Science, 1955. 18(90): p. 527-534.
59. Hermans, J.J. and H. Fujita, Electrophoresis of charged polymer molecules with partial free drainage. Koninklijke Nederlandse Akademie Wetenschappen Proceedings, 1955. Series B58: p. 182.
60. Overbeek, J.T.G. and D. Stigter, ELECTROPHORESIS OF POLYELECTROLYTES WITH PARTIAL DRAINAGE. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1956. 75(4): p. 543-554.
61. Nagasawa, M., A. Soda, and I. Kagawa, Electrophoresis of polyelectrolyte in salt solutions. Journal of Polymer Science, 1958. 31(123): p. 439-451.
62. Imai, N. and K. Iwasa, THEORY OF ELECTROPHORESIS OF POLYELECTROLYTES. Israel Journal of Chemistry, 1973. 11(2-3): p. 223-233.
63. Miller, N.P., J.C. Berg, and R.W. O'Brien, The electrophoretic mobility of a porous aggregate. Journal of Colloid and Interface Science, 1992. 153(1): p. 237.
64. Ohshima, H., Electrophoretic mobility of soft particles in concentrated suspensions. Journal of Colloid and Interface Science, 2000. 225(1): p. 233-242.
65. He, Y.Y., E. Wu, and E. Lee, Electrophoresis in Suspensions of Charged Porous Spheres in Salt-Free Media. Chemical Engineering Science, 2010.
66. Hsu, H.-P. and E. Lee, Counterion condensation of a polyelectrolyte. Electrochemistry Communications, 2012. 15(1): p. 59-62.
67. Yeh, L.H., K.L. Liu, and J.P. Hsu, Importance of Ionic Polarization Effect on the Electrophoretic Behavior of Polyelectrolyte Nanoparticles in Aqueous Electrolyte Solutions. The Journal of Physical Chemistry C, 2012. 116: p. 367-373.
68. Dukhin, A.S. and S.S. Dukhin, Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules. Electrophoresis, 2005. 26(11): p. 2149-2153.
69. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis, 2014. 35(5): p. 691-713.
70. Debye, P., A method for the determination of the mass of electrolytic ions. The Journal of Chemical Physics, 1933. 1(1): p. 13-16.
71. Hunter, R.J. and R.W. O'Brien, Electroacoustic characterization of colloids with unusual particle properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997. 126(2): p. 123-128.
72. Dukhin, A.S., et al., Acoustic and electroacoustic spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 173(1–3): p. 127-158.
73. Gibb, S.E. and R.J. Hunter, Dynamic mobility of colloidal particles with thick double layers. Journal of colloid and interface science, 2000. 224(1): p. 99-111.
74. Guffond, M.C., et al., The dynamic mobility of colloidal semiconducting antimony-doped Tin (IV) oxide particles. Journal of colloid and interface science, 2001. 235(2): p. 371-379.
75. Mizuno, D., Y. Kimura, and R. Hayakawa, Dynamic electrophoretic mobility of colloidal particles measured by the newly developed method of quasi-elastic light scattering in a sinusoidal electric field. Langmuir, 2000. 16(24): p. 9547-9554.
76. Hunter, R.J., Recent developments in the electroacoustic characterisation of colloidal suspensions and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 141(1): p. 37-66.
77. O'Brien, R., Electro-acoustic effects in a dilute suspension of spherical particles. Journal of Fluid Mechanics, 1988. 190: p. 71-86.
78. Mangelsdorf, C.S. and L.R. White, Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J. Chem. Soc., Faraday Trans., 1992. 88(24): p. 3567-3581.
79. Ohshima, H., Dynamic electrophoretic mobility of spherical colloidal particles in concentrated suspensions: approximation of nonoverlapping double layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 159(2): p. 293-297.
80. Dukhin, A.S., et al., Electroacoustic Phenomena in Concentrated Dispersions:  New Theory and CVI Experiment. Langmuir, 1999. 15(20): p. 6692-6706.
81. Shilov, V., N. Zharkikh, and Y.B. Borkovskaya, Theory of non-equilibrium electrosurface phenomena in concentrated disperse systems. 1. Application of non-equilibrium thermodynamics to cell model of concentrated dispersions. Colloid Journal of the USSR, 1981. 43(3): p. 434-438.
82. Tung, C.P., E. Lee, and J.P. Hsu, Dynamic electrophoretic mobility of a sphere in a spherical cavity. J Colloid Interface Sci, 2003. 260(1): p. 118-125.
83. Lou, S.H., E. Lee, and J.P. Hsu, Dynamic electrophoresis of a sphere in a spherical cavity: arbitrary surface potential. J Colloid Interface Sci, 2005. 285(2): p. 865-871.
84. Carrique, F., et al., Dynamic Electrophoretic Mobility of Spherical Colloidal Particles in Salt-Free Concentrated Suspensions. Langmuir, 2008. 24(6): p. 2395-2406.
85. Ohshima, H., Dynamic electrophoretic mobility of a soft particle. Journal of Colloid and Interface Science, 2001. 233(1): p. 142-152.
86. López-Garcı́a, J.J., C. Grosse, and J. Horno, Numerical study of colloidal suspensions of soft spherical particles using the network method: 2. AC electrokinetic and dielectric properties. Journal of Colloid and Interface Science, 2003. 265(2): p. 341-350.
87. Min, W.L., E. Lee, and J.P. Hsu, Dynamic electrophoresis of a spherical dispersion of soft particles subject to a stress-jump condition. J Colloid Interface Sci, 2006. 299(1): p. 464-471.
88. Hsu, J.P., W.L. Min, and E. Lee, Dynamic electrophoresis of droplet dispersions at low surface potentials. J Colloid Interface Sci, 2007. 306(2): p. 421-427.
89. Lou, J. and E. Lee, Dynamic electrophoresis of concentrated droplet dispersions at arbitrary surface potentials. Chemical Engineering Science, 2007. 62(22): p. 6234-6245.
90. Uppapalli, S. and H. Zhao, Polarization of a diffuse soft particle subjected to an alternating current field. Langmuir, 2012. 28(30): p. 11164-11172.
91. Ahualli, S., et al., Dynamic Electrophoretic Mobility of Concentrated Dispersions of Spherical Colloidal Particles. On the Consistent Use of the Cell Model. Langmuir, 2006. 22(16): p. 7041-7051.
92. Ahualli, S., et al., Use of a cell model for the evaluation of the dynamic mobility of spherical silica suspensions. Journal of Colloid and Interface Science, 2007. 309(2): p. 342-349.
93. Ahualli, S., et al., AC Electrokinetics of Concentrated Suspensions of Soft Particles. Langmuir, 2009. 25(4): p. 1986-1997.
94. Jiménez, M.L., et al., Giant permittivity and dynamic mobility observed for spherical polyelectrolyte brushes. Soft Matter, 2011. 7(8): p. 3758-3762.
95. Ahualli, S., et al., Electrophoresis and Dielectric Dispersion of Spherical Polyelectrolyte Brushes. Langmuir, 2012. 28(47): p. 16372-16381.
96. Merlin, J. and J.F.L. Duval, Electrodynamics of soft multilayered particles dispersions: dielectric permittivity and dynamic mobility. Physical Chemistry Chemical Physics, 2014. 16(29): p. 15173-15188.
97. Heard, D.H. and G.V.F. Seaman, THE INFLUENCE OF PH AND IONIC STRENGTH ON THE ELECTROKINETIC STABILITY OF THE HUMAN ERYTHROCYTE MEMBRANE. Journal of General Physiology, 1960. 43(3): p. 635-654.
98. Wilkins, D.J. and R.H. Ottewill, FLOCCULATION OF SHEEP LEUCOCYTES .1. ELECTROPHORETIC STUDIES. Journal of Theoretical Biology, 1962. 2(2): p. 165-&.
99. Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry. 2008: Macmillan.
100. Wilson, K. and J.M. Walker, Principles and techniques of biochemistry and molecular biology. 2010: Cambridge University Press.
101. Ninham, B.W. and Parsegia.Va, ELECTROSTATIC POTENTIAL BETWEEN SUFRACES BEARING IONIZABLE GROUPS IN IONIC EQUILIBRIUM WITH PHYSIOLOGIC SALINE SOLUTION. Journal of Theoretical Biology, 1971. 31(3): p. 405-&.
102. Chan, D., T.W. Healy, and L.R. White, ELECTRICAL DOUBLE-LAYER INTERACTIONS UNDER REGULATION BY SURFACE IONIZATION EQUILIBRIA-DISSIMILAR AMPHOTERIC SURFACES. Journal of the Chemical Society-Faraday Transactions I, 1976. 72: p. 2844-2865.
103. Chan, D., et al., REGULATION OF SURFACE-POTENTIAL AT AMPHOTERIC SURFACES DURING PARTICLE-PARTICLE INTERACTION. Journal of the Chemical Society-Faraday Transactions I, 1975. 71(5): p. 1046-1057.
104. Usui, S., Electrical double-layer interaction between oppositely charged dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. Journal of Colloid and Interface Science, 2008. 320(1): p. 353-359.
105. Chan, D.Y., et al., Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. J Colloid Interface Sci, 2006. 296
(1): p. 150-8.
106. Usui, S., Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy-Chapman-Stern-Grahame model. J Colloid Interface Sci, 2004. 280(1): p. 113-9.
107. Carnie, S.L., D.Y.C. Chan, and J. Stankovich, COMPUTATION OF FORCES BETWEEN SPHERICAL COLLOIDAL PARTICLES - NONLINEAR POISSON-BOLTZMANN THEORY. Journal of Colloid and Interface Science, 1994. 165(1): p. 116-128.
108. Carnie, S.L. and D.Y.C. Chan, INTERACTION FREE-ENERGY BETWEEN IDENTICAL SPHERICAL COLLOIDAL PARTICLES - THE LINEARIZED POISSON-BOLTZMANN THEORY. Journal of Colloid and Interface Science, 1993. 155(2): p. 297-312.
109. Carnie, S.L. and D.Y.C. Chan, INTERACTION FREE-ENERGY BETWEEN PLATES WITH CHARGE REGULATION - A LINEARIZED MODEL. Journal of Colloid and Interface Science, 1993. 161(1): p. 260-264.
110. Krozel, J.W. and D.A. Saville, ELECTROSTATIC INTERACTIONS BETWEEN 2 SPHERES - SOLUTIONS OF THE DEBYE-HUCKEL EQUATION WITH A CHARGE REGULATION BOUNDARY-CONDITION. Journal of Colloid and Interface Science, 1992. 150(2): p. 365-373.
111. Davis, J.A., R.O. James, and J.O. Leckie, SURFACE IONIZATION AND COMPLEXATION AT OXIDE-WATER INTERFACE .1. COMPUTATION OF ELECTRICAL DOUBLE-LAYER PROPERTIES IN SIMPLE ELECTROLYTES. Journal of Colloid and Interface Science, 1978. 63(3): p. 480-499.
112. Prieve, D.C. and E. Ruckenstein, SURFACE-POTENTIAL OF A DOUBLE-LAYER INTERACTION FORCE BETWEEN SURFACES CHARACTERIZED BY MULTIPLE IONIZABLE GROUPS. Journal of Theoretical Biology, 1976. 56(1): p. 205-228.
113. Tsai, P., H. Fang, and E. Lee, Electrophoresis of a Charge-Regulated Sphere Normal to an Air-Water Interface. Journal of Physical Chemistry B, 2011. 115(20): p. 6484-6494.
114. Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir, 2010. 26(1): p. 47-55.
115. Tang, Y.P., et al., Electrophoretic motion of a charge-regulated sphere normal to a plane. Journal of Colloid and Interface Science, 2001. 242(1): p. 121-126.
116. Lee, E., F.Y. Yen, and J.P. Hsu, Electrophoretic mobility of concentrated spheres with a charge-regulated surface. Electrophoresis, 2000. 21(3): p. 475-480.
117. Ohshima, H., Theory of colloid and interfacial electric phenomena. 2006: Academic Press.
118. Ohshima, H. and T. Kondo, Electrostatic repulsion of ion penetrable charged membranes: Role of Donnan potential. Journal of Theoretical Biology, 1987. 128(2): p. 187-194.
119. Ohshima, H. and T. Kondo, Membrane potential and Donnan potential. Biophysical Chemistry, 1988. 29(3): p. 277-281.
120. Nakamura, M., H. Ohshima, and T. Kondo, Charge distribution in the surface region of chicken and goose erythrocytes. Colloids and Surfaces B: Biointerfaces, 1994. 2(5): p. 445-449.
121. Morita, K., et al., Electrophoretic behavior of rat lymphocyte subpopulations. Journal of Colloid and Interface Science, 1991. 147(2): p. 457-461.
122. Tseng, S., et al., Electrophoresis of a charge-regulated soft sphere: Importance of effective membrane charge. Colloids and Surfaces B: Biointerfaces, 2013. 102(0): p. 864-870.
123. Zhang, X.G., et al., Electrophoresis of a Charge-Regulated Soft Sphere in a Charged Cylindrical Pore. Journal of Physical Chemistry B, 2010. 114(4): p. 1621-1631.
124. Brinkman, H., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1949. 1(1): p. 27-34.
125. Hussaini, M. and T. Zang, Spectral methods in fluid dynamics. Annual Review of Fluid Mechanics, 1987. 19(1): p. 339-367.
126. Jones, E.H., Reynolds, D. A., Wood, A. L. and Thomas, D. G., Use of Electrophoresis for Transporting Nano-Iron in Porous Media. Ground Water, 2010.
127. Pomes, V., A. Fernandez, and D. Houi, Characteristic time determination for transport phenomena during the electrokinetic treatment of a porous medium. Chemical Engineering Journal, 2002. 87(2): p. 251-260.
128. Feng, J., P. Ganatos, and S. Weinbaum, Motion of a sphere near planar confining boundaries in a Brinkman medium. Journal of Fluid Mechanics, 1998. 375: p. 265-296.
129. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74(0): p. 1607-1626.
130. Hsu, H.-P. and E. Lee, Electrophoresis of a single charged porous sphere in an infinite medium of electrolyte solution. J Colloid Interface Sci, 2013. 390(1): p. 85-95.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73208-
dc.description.abstract本研究以具電荷調節多孔球模型為基礎,探討其振盪電泳行為,以提供更趨真實的模擬系統。多孔球模型為模擬聚電解質的重要模型,而聚電解質有很廣泛的應用價值,如許多生物粒子DNA、RNA和蛋白質等,因此在生物醫學領域常見其重要應用,如DNA疫苗、基因轉殖(gene delivery)、藥物釋放…等。因此多孔球粒子的研究為相當重要的課題!
振盪電泳為測量粒子性質的重要工具,因為相較於一般直流電泳,除了待測物不需要稀釋之優勢外,還多了頻率之調控參數,更可避免焦耳熱效應的產生,降低實驗誤差。
具電荷調節多孔球模型相較於粒子帶電量固定的假設更為真實,因為大多數聚電解質都具有可解離之官能基。本研究會討論電荷調節現象對於振盪電泳動度的影響,主要探討的參數為:電解質離子強度、官能基電荷密度、官能基解離常數、多孔球摩擦係數、外加交流電場頻率、pH值等,以提供實驗學者參考。
zh_TW
dc.description.abstractWe use the charge-regulated porous particle model as the basis to investigate the electrokinetic behavior in dynamic electrophoresis of colloid particle. Many bioparticles such as potein, DNA and RNA are belonged to polyelectrolyte which has great application in biomedical field and is well modeled as charged porous spheres. So it is important to know the behavior of these particles.
Dynamic electrophoresis is an important tool for measuring particle properties. Compared with electrophoresis, dynamic electrophoresis can be operated with concentrated sample. Moreover, dynamic electrophoresis is driven by alternating current (AC), which has advantage of convenience of measure and prevention of Joule heating effect.
The charge-regulated porous particle model compared with the constant fixed charged porous particle model is more closed to the reality. Since the most polyelectrolytes have dissociable dunctional group on surface, the charge on them are inconstant. In our study, we will discuss the influence of charge-regulation phenomena to the dynamic mobility. Double-layer thickness, functional charge density, friction coefficient, dissociation constant, pH of solution and the electric-field frequency.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:22:32Z (GMT). No. of bitstreams: 1
ntu-108-R05524073-1.pdf: 2891510 bytes, checksum: f041897d96d27393731c225cb18ebb2a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 IV
圖目錄 VII
第 1 章 緒論 1
1-1 膠體懸浮液 1
1-2 聚電解質及多孔粒子模型 11
1-3 電動力學現象與文獻回顧 16
1.3.1 電雙層理論 16
1.3.2 電雙層極化效應 17
1.3.3 電泳文獻回顧 18
1.3.4 多孔球電泳文獻回顧 23
1-4 振盪電泳概述 25
1.4.1 振盪電泳理論 25
1.4.2 振盪電泳文獻回顧 28
1-5 電荷調節現象: 31
1-6 研究目的與論文架構 34
第 2 章 理論分析 36
2-1 電動力學方程組 37
2.1.1 電位方程式 37
2.1.2 離子守恆式 39
2.1.3 流場方程式 40
2-2 平衡態與擾動態 45
2.2.1 平衡態 46
2.2.2 擾動態 48
2-3 系統變數無因次化及系統一維化 51
2.3.1 系統參數無因次化 51
2.3.2 擾動狀態變數之線性化 54
2.3.3 系統變數之一維化 57
2-4 粒子受力計算 61
2-5 電泳動度計算 62
2.5.1 靜態電泳動度計算 62
2.5.2 多孔球震盪電泳動度計算 64
第 3 章 數值方法 68
3-1 正交配位法 68
3-2 空間映射 73
3-3 多區聯解問題 75
3-4 牛頓(Newton-Raphson)迭代法 79
3-5 擾動態多變數聯立解 82
第 4 章 多孔球振盪電泳 85
4-1 系統介紹 85
4-2 邊界條件 90
4.2.1 平衡態邊界條件 90
4.2.2 擾動態邊界條件 92
4.2.3 無因次一維化之主控方程式及邊界條件 95
4-3 驗證程式之正確性 102
4.3.1 比對徐瑄珮之單一多孔球 103
4-4 頻率之影響頻率之影響 104
4-5 多孔球摩擦係數之影響 108
4-6 電解質離子強度之影響 112
4-7 官能基密度的影響 121
4-8 官能基解離常數的影響 123
4-9 pH值的影響 127
4-10 結論 131
參考文獻 133
符號說明 144
附錄 148
A-1力積分之推導 148
A-2 球心邊界條件設定 156
A-3 無窮大系統計算方法 159
dc.language.isozh-TW
dc.subject電荷調節zh_TW
dc.subject電動力學zh_TW
dc.subject交流電場zh_TW
dc.subject振盪電泳zh_TW
dc.subject電雙層極化效應zh_TW
dc.subject多孔球zh_TW
dc.subjectporous sphereen
dc.subjectdynamic electrophoresisen
dc.subjectAC electric fielden
dc.subjectelectrokineticsen
dc.subjectcharge-regulation phenomenaen
dc.subjectdouble layer polarizationen
dc.title具電荷調節多孔球粒子之振盪電泳行為zh_TW
dc.titleDynamic Electrophoresis of a Charge-Regulated Porous Sphereen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙玲,游佳欣
dc.subject.keyword振盪電泳,交流電場,電動力學,多孔球,電荷調節,電雙層極化效應,zh_TW
dc.subject.keyworddynamic electrophoresis,AC electric field,electrokinetics,porous sphere,charge-regulation phenomena,double layer polarization,en
dc.relation.page163
dc.identifier.doi10.6342/NTU201801698
dc.rights.note有償授權
dc.date.accepted2019-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved