Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴育英(Yu-Ying Lai)
dc.contributor.authorYu-Jen Linen
dc.contributor.author林囿任zh_TW
dc.date.accessioned2021-05-11T05:00:14Z-
dc.date.available2019-08-07
dc.date.available2021-05-11T05:00:14Z-
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-07-26
dc.identifier.citation1. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications 2013, 4, 1446.
2. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 2012, 112 (4), 2208-2267.
3. Feng, F.; Liu, L.; Yang, Q.; Wang, S., Water-Soluble Conjugated Polymers for Fluorescent-Enzyme Assays. 2010, 31 (16), 1405-1421.
4. Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B., Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chemical Reviews 2009, 109 (3), 897-1091.
5. Hösel, M.; Dam, H. F.; Krebs, F. C., Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells. 2015, 3 (4), 293-304.
6. Ito, S., Printable solar cells. 2015, 4 (1), 51-73.
7. Reale, A.; La Notte, L.; Salamandra, L.; Polino, G.; Susanna, G.; Brown, T. M.; Brunetti, F.; Di Carlo, A., Spray Coating for Polymer Solar Cells: An Up-to-Date Overview. 2015, 3 (4), 385-406.
8. Lei, T.; Wang, J.-Y.; Pei, J., Roles of Flexible Chains in Organic Semiconducting Materials. Chemistry of Materials 2014, 26 (1), 594-603.
9. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2014, 26 (1), 604-615.
10. García-Melchor, M.; Braga, A. A. C.; Lledós, A.; Ujaque, G.; Maseras, F., Computational Perspective on Pd-Catalyzed C–C Cross-Coupling Reaction Mechanisms. Accounts of Chemical Research 2013, 46 (11), 2626-2634.
11. Espinet, P.; Echavarren, A. M., The Mechanisms of the Stille Reaction. 2004, 43 (36), 4704-4734.
12. Miyaura, N.; Suzuki, A., Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews 1995, 95 (7), 2457-2483.
13. Xue, L.; Lin, Z., Theoretical aspects of palladium-catalysed carbon–carbon cross-coupling reactions. Chemical Society Reviews 2010, 39 (5), 1692-1705.
14. Pouliot, J.-R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M., Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chemical Reviews 2016, 116 (22), 14225-14274.
15. Ackermann, L.; Vicente, R.; Kapdi, A. R., Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by CH Bond Cleavage. 2009, 48 (52), 9792-9826.
16. Alberico, D.; Scott, M. E.; Lautens, M., Aryl−Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chemical Reviews 2007, 107 (1), 174-238.
17. Bellina, F.; Rossi, R., Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C−H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews 2010, 110 (2), 1082-1146.
18. Ackermann, L., Carboxylate-Assisted Transition-Metal-Catalyzed C−H Bond Functionalizations: Mechanism and Scope. Chemical Reviews 2011, 111 (3), 1315-1345.
19. Gorelsky, S. I.; Lapointe, D.; Fagnou, K., Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. Journal of the American Chemical Society 2008, 130 (33), 10848-10849.
20. Guchhait, S. K.; Kandekar, S.; Kashyap, M.; Taxak, N.; Bharatam, P. V., C–H Bond Functionalization Under Metalation–Deprotonation Process: Regioselective Direct Arylation of 3-Aminoimidazo[1,2-a]pyrazine. The Journal of Organic Chemistry 2012, 77 (18), 8321-8328.
21. Rudenko, A. E.; Thompson, B. C., Influence of the Carboxylic Acid Additive Structure on the Properties of Poly(3-hexylthiophene) Prepared via Direct Arylation Polymerization (DArP). Macromolecules 2015, 48 (3), 569-575.
22. Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K., Catalytic Direct Arylation with Aryl Chlorides, Bromides, and Iodides:  Intramolecular Studies Leading to New Intermolecular Reactions. Journal of the American Chemical Society 2006, 128 (2), 581-590.
23. Lafrance, M.; Fagnou, K., Palladium-Catalyzed Benzene Arylation:  Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design. Journal of the American Chemical Society 2006, 128 (51), 16496-16497.
24. Gorelsky, S. I.; Lapointe, D.; Fagnou, K., Analysis of the Palladium-Catalyzed (Aromatic)C–H Bond Metalation–Deprotonation Mechanism Spanning the Entire Spectrum of Arenes. The Journal of Organic Chemistry 2012, 77 (1), 658-668.
25. Gorelsky, S. I., Origins of regioselectivity of the palladium-catalyzed (aromatic)CH bond metalation–deprotonation. Coordination Chemistry Reviews 2013, 257 (1), 153-164.
26. Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K., Kinetics and mechanism of ortho-palladation of ring-substituted NN-dimethylbenzylamines. Journal of the Chemical Society, Dalton Transactions 1985, (12), 2629-2638.
27. Biswas, B.; Sugimoto, M.; Sakaki, S., C−H Bond Activation of Benzene and Methane by M(η2-O2CH)2 (M = Pd or Pt). A Theoretical Study. Organometallics 2000, 19 (19), 3895-3908.
28. Davies, D. L.; Donald, S. M. A.; Macgregor, S. A., Computational Study of the Mechanism of Cyclometalation by Palladium Acetate. Journal of the American Chemical Society 2005, 127 (40), 13754-13755.
29. García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M., Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular Arylation. Journal of the American Chemical Society 2006, 128 (4), 1066-1067.
30. Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K., A General Catalyst for the β-Selective C–H Bond Arylation of Thiophenes with Iodoarenes. 2010, 49 (47), 8946-8949.
31. Tang, S.-Y.; Guo, Q.-X.; Fu, Y., Mechanistic Origin of Ligand-Controlled Regioselectivity in Pd-Catalyzed CH Activation/Arylation of Thiophenes. 2011, 17 (49), 13866-13876.
32. Shibahara, F.; Murai, T., Direct CH Arylation of Heteroarenes Catalyzed by Palladium/ Nitrogen-Based Ligand Complexes. 2013, 2 (8), 624-636.
33. René, O.; Fagnou, K., Room-Temperature Direct Arylation of Polyfluorinated Arenes under Biphasic Conditions. Organic Letters 2010, 12 (9), 2116-2119.
34. Campeau, L.-C.; Parisien, M.; Leblanc, M.; Fagnou, K., Biaryl Synthesis via Direct Arylation:  Establishment of an Efficient Catalyst for Intramolecular Processes. Journal of the American Chemical Society 2004, 126 (30), 9186-9187.
35. Lafrance, M.; Lapointe, D.; Fagnou, K., Mild and efficient palladium-catalyzed intramolecular direct arylation reactions. Tetrahedron 2008, 64 (26), 6015-6020.
36. Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M., Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation. Journal of the American Chemical Society 2015, 137 (20), 6705-6711.
37. Ghosh, S.; Kouame, N. A.; Remita, S.; Ramos, L.; Goubard, F.; Aubert, P.-H.; Dazzi, A.; Deniset-Besseau, A.; Remita, H., Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Scientific Reports 2015, 5, 18002.
38. Se´vignon, M.; Papillon, J.; Schulz, E.; Lemaire, M., New synthetic method for the polymerization of alkylthiophenes. Tetrahedron Letters 1999, 40 (32), 5873-5876.
39. Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F., Palladium-Catalyzed Dehydrohalogenative Polycondensation of 2-Bromo-3-hexylthiophene: An Efficient Approach to Head-to-Tail Poly(3-hexylthiophene). Journal of the American Chemical Society 2010, 132 (33), 11420-11421.
40. Lu, W.; Kuwabara, J.; Kanbara, T., Polycondensation of Dibromofluorene Analogues with Tetrafluorobenzene via Direct Arylation. Macromolecules 2011, 44 (6), 1252-1255.
41. Wakioka, M.; Kitano, Y.; Ozawa, F., A Highly Efficient Catalytic System for Polycondensation of 2,7-Dibromo-9,9-dioctylfluorene and 1,2,4,5-Tetrafluorobenzene via Direct Arylation. Macromolecules 2013, 46 (2), 370-374.
42. Chang, S.-W.; Waters, H.; Kettle, J.; Kuo, Z.-R.; Li, C.-H.; Yu, C.-Y.; Horie, M., Pd-Catalysed Direct Arylation Polymerisation for Synthesis of Low-Bandgap Conjugated Polymers and Photovoltaic Performance. 2012, 33 (22), 1927-1932.
43. Kowalski, S.; Allard, S.; Scherf, U., Synthesis of Poly(4,4-dialkyl-cyclopenta[2,1-b:3,4-b′]dithiophene-alt-2,1,3-benzothiadiazole) (PCPDTBT) in a Direct Arylation Scheme. ACS Macro Letters 2012, 1 (4), 465-468.
44. Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P.-O.; Pouliot, J.-R.; Veilleux, J.; Leclerc, M., Synthesis of 5-Alkyl[3,4-c]thienopyrrole-4,6-dione-Based Polymers by Direct Heteroarylation. 2012, 51 (9), 2068-2071.
45. Wakioka, M.; Ichihara, N.; Kitano, Y.; Ozawa, F., A Highly Efficient Catalyst for the Synthesis of Alternating Copolymers with Thieno[3,4-c]pyrrole-4,6-dione Units via Direct Arylation Polymerization. Macromolecules 2014, 47 (2), 626-631.
46. Guo, Q.; Dong, J.; Wan, D.; Wu, D.; You, J., Modular Establishment of a Diketopyrrolopyrrole-Based Polymer Library via Pd-Catalyzed Direct C–H (Hetero)arylation: a Highly Efficient Approach to Discover Low-Bandgap Polymers. 2013, 34 (6), 522-527.
47. Kuwabara, J.; Nohara, Y.; Choi, S. J.; Fujinami, Y.; Lu, W.; Yoshimura, K.; Oguma, J.; Suenobu, K.; Kanbara, T., Direct arylation polycondensation for the synthesis of bithiophene-based alternating copolymers. Polymer Chemistry 2013, 4 (4), 947-953.
48. Kuwabara, J.; Takase, N.; Yasuda, T.; Kanbara, T., Synthesis of conjugated polymers possessing diketopyrrolopyrrole units bearing phenyl, pyridyl, and thiazolyl groups by direct arylation polycondensation: Effects of aromatic groups in DPP on physical properties. 2016, 54 (15), 2337-2345.
49. Liu, D.-P.; Chen, Q.; Zhao, Y.-C.; Zhang, L.-M.; Qi, A.-D.; Han, B.-H., Fluorinated Porous Organic Polymers via Direct C–H Arylation Polycondensation. ACS Macro Letters 2013, 2 (6), 522-526.
50. Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S., Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews 2012, 112 (8), 4687-4735.
51. Ahn, D. J.; Kim, J.-M., Fluorogenic Polydiacetylene Supramolecules: Immobilization, Micropatterning, and Application to Label-Free Chemosensors. Accounts of Chemical Research 2008, 41 (7), 805-816.
52. Ho, H.-A.; Najari, A.; Leclerc, M., Optical Detection of DNA and Proteins with Cationic Polythiophenes. Accounts of Chemical Research 2008, 41 (2), 168-178.
53. Wu, P. G.; Brand, L., Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 1994, 218 (1), 1-13.
54. Liu, B.; Wang, S.; Bazan, G. C.; Mikhailovsky, A., Shape-Adaptable Water-Soluble Conjugated Polymers. Journal of the American Chemical Society 2003, 125 (44), 13306-13307.
55. Zhu, C.; Yang, Q.; Liu, L.; Wang, S., A potent fluorescent probe for the detection of cell apoptosis. Chemical Communications 2011, 47 (19), 5524-5526.
56. Kim, J.-M.; Lee, J.-S.; Choi, H.; Sohn, D.; Ahn, D. J., Rational Design and in-Situ FTIR Analyses of Colorimetrically Reversibe Polydiacetylene Supramolecules. Macromolecules 2005, 38 (22), 9366-9376.
57. Ho, H.-A.; Boissinot, M.; Bergeron, M. G.; Corbeil, G.; Doré, K.; Boudreau, D.; Leclerc, M., Colorimetric and Fluorometric Detection of Nucleic Acids Using Cationic Polythiophene Derivatives. 2002, 41 (9), 1548-1551.
58. Xu, Q.; Wu, C.; Zhu, C.; Duan, X.; Liu, L.; Han, Y.; Wang, Y.; Wang, S., A Water-Soluble Conjugated Polymer for Protein Identification and Denaturation Detection. 2010, 5 (12), 2524-2529.
59. Liu, B.; Bazan, G. C., Interpolyelectrolyte Complexes of Conjugated Copolymers and DNA:  Platforms for Multicolor Biosensors. Journal of the American Chemical Society 2004, 126 (7), 1942-1943.
60. An, L.; Tang, Y.; Feng, F.; He, F.; Wang, S., Water-soluble conjugated polymers for continuous and sensitive fluorescence assays for phosphatase and peptidase. Journal of Materials Chemistry 2007, 17 (39), 4147-4152.
61. Fang, Z.; Pu, K.-Y.; Liu, B., Asymmetric Fluorescence Quenching of Dual-Emissive Porphyrin-Containing Conjugated Polyelectrolytes for Naked-Eye Mercury Ion Detection. Macromolecules 2008, 41 (22), 8380-8387.
62. Phillips, R. L.; Kim, I.-B.; Tolbert, L. M.; Bunz, U. H. F., Fluorescence Self-Quenching of a Mannosylated Poly(p-phenyleneethynylene) Induced by Concanavalin A. Journal of the American Chemical Society 2008, 130 (22), 6952-6954.
63. Xue, C.; Velayudham, S.; Johnson, S.; Saha, R.; Smith, A.; Brewer, W.; Murthy, P.; Bagley, S. T.; Liu, H., Highly Water-Soluble, Fluorescent, Conjugated Fluorene-Based Glycopolymers with Poly(ethylene glycol)-Tethered Spacers for Sensitive Detection of Escherichia coli. 2009, 15 (10), 2289-2295.
64. Pu, K.-Y.; Li, K.; Liu, B., A Molecular Brush Approach to Enhance Quantum Yield and Suppress Nonspecific Interactions of Conjugated Polyelectrolyte for Targeted Far-Red/Near-Infrared Fluorescence Cell Imaging. 2010, 20 (17), 2770-2777.
65. Traina, C. A.; Bakus, R. C.; Bazan, G. C., Design and Synthesis of Monofunctionalized, Water-Soluble Conjugated Polymers for Biosensing and Imaging Applications. Journal of the American Chemical Society 2011, 133 (32), 12600-12607.
66. Yu, M.; Liu, L.; Wang, S., Water-soluble dendritic-conjugated polyfluorenes: Synthesis, characterization, and interactions with DNA. 2008, 46 (22), 7462-7472.
67. Pu, K.-Y.; Li, K.; Shi, J.; Liu, B., Fluorescent Single-Molecular Core−Shell Nanospheres of Hyperbranched Conjugated Polyelectrolyte for Live-Cell Imaging. Chemistry of Materials 2009, 21 (16), 3816-3822.
68. DeVasher, R. B.; Moore, L. R.; Shaughnessy, K. H., Aqueous-Phase, Palladium-Catalyzed Cross-Coupling of Aryl Bromides under Mild Conditions, Using Water-Soluble, Sterically Demanding Alkylphosphines. The Journal of Organic Chemistry 2004, 69 (23), 7919-7927.
69. Subbiah, J.; Mitchell, V. D.; Hui, N. K. C.; Jones, D. J.; Wong, W. W. H., A Green Route to Conjugated Polyelectrolyte Interlayers for High-Performance Solar Cells. 2017, 56 (29), 8431-8434.
70. Discher, D. E.; Eisenberg, A., Polymer Vesicles. Science 2002, 297 (5583), 967.
71. van Dongen, S. F. M.; de Hoog, H.-P. M.; Peters, R. J. R. W.; Nallani, M.; Nolte, R. J. M.; van Hest, J. C. M., Biohybrid Polymer Capsules. Chemical Reviews 2009, 109 (11), 6212-6274.
72. Walther, A.; Müller, A. H. E., Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chemical Reviews 2013, 113 (7), 5194-5261.
73. Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S., Self-assembly of random copolymers. Chemical Communications 2014, 50 (88), 13417-13432.
74. Single-Chain Nanoparticles via Self-Folding Amphiphilic Copolymers in Water. In Single‐Chain Polymer Nanoparticles, pp 313-339.
75. Morishima, Y.; Nomura, S.; Ikeda, T.; Seki, M.; Kamachi, M., Characterization of Unimolecular Micelles of Random Copolymers of Sodium 2-(Acrylamido)-2-methylpropanesulfonate and Methacrylamides Bearing Bulky Hydrophobic Substituents. Macromolecules 1995, 28 (8), 2874-2881.
76. Dobson, C. M., Protein folding and misfolding. Nature 2003, 426 (6968), 884-890.
77. Imai, S.; Hirai, Y.; Nagao, C.; Sawamoto, M.; Terashima, T., Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water. Macromolecules 2018, 51 (2), 398-409.
78. Matsumoto, K.; Terashima, T.; Sugita, T.; Takenaka, M.; Sawamoto, M., Amphiphilic Random Copolymers with Hydrophobic/Hydrogen-Bonding Urea Pendants: Self-Folding Polymers in Aqueous and Organic Media. Macromolecules 2016, 49 (20), 7917-7927.
79. Imai, S.; Takenaka, M.; Sawamoto, M.; Terashima, T., Self-Sorting of Amphiphilic Copolymers for Self-Assembled Materials in Water: Polymers Can Recognize Themselves. Journal of the American Chemical Society 2019, 141 (1), 511-519.
80. Huang, F.; Wang, X.; Wang, D.; Yang, W.; Cao, Y., Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer 2005, 46 (25), 12010-12015.
81. Palamà, I.; Di Maria, F.; Viola, I.; Fabiano, E.; Gigli, G.; Bettini, C.; Barbarella, G., Live-Cell-Permeant Thiophene Fluorophores and Cell-Mediated Formation of Fluorescent Fibrils. Journal of the American Chemical Society 2011, 133 (44), 17777-17785.
82. Suspène, C.; Miozzo, L.; Choi, J.; Gironda, R.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Horowitz, G.; Yassar, A., Amphiphilic conjugated block copolymers for efficient bulk heterojunction solar cells. Journal of Materials Chemistry 2012, 22, 4511.
83. Xing, C.; Liu, L.; Tang, H.; Feng, X.; Yang, Q.; Wang, S.; Bazan, G. C., Design Guidelines For Conjugated Polymers With Light-Activated Anticancer Activity. 2011, 21 (21), 4058-4067.
84. Zhao, Y.; Zhu, H.; Wang, X.; Liu, Y.; Wu, X.; Zhou, H.; Ni, Z.-H., Enzyme-Catalyzed Synthesis of Water-Soluble Conjugated Poly[2-(3-thienyl)-Ethoxy-4-Butylsulfonate]. 2016; Vol. 8, p 139.
85. Bruessau, R. J., Size exclusion chromatography of polyelectrolytes with aqueous elution solvents. 1992, 61 (1), 190-218.
86. Lai, Y.-Y.; Tung, T.-C.; Liang, W.-W.; Cheng, Y.-J., Synthesis of Poly(3-hexylthiophene), Poly(3-hexylselenophene), and Poly(3-hexylselenophene-alt-3-hexylthiophene) by Direct C–H Arylation Polymerization via N-Heterocyclic Carbene Palladium Catalysts. Macromolecules 2015, 48 (9), 2978-2988.
87. Peterson, J. J.; Simon, Y. C.; Coughlin, E. B.; Carter, K. R., Polyfluorene with p-carborane in the backbone. Chemical Communications 2009, (33), 4950-4952.
88. Ikenoue, Y.; Outani, N.; Patil, A. O.; Wudl, F.; Heeger, A. J., Electrochemical studies of self-doped conducting polymers: Verification of the ‘cation-popping’ doping mechanism. Synthetic Metals 1989, 30 (3), 305-319.
89. Bartik, T.; Bartik, B.; Hanson, B. E.; Glass, T.; Bebout, W., Comments on the synthesis of trisulfonated triphenylphosphine: reaction monitoring by NMR spectroscopy. Inorganic Chemistry 1992, 31 (12), 2667-2670.
90. Walczak, R. M.; Brookins, R. N.; Savage, A. M.; van der Aa, E. M.; Reynolds, J. R., Convenient Synthesis of Functional Polyfluorenes via a Modified One-Pot Suzuki−Miyaura Condensation Reaction. Macromolecules 2009, 42 (5), 1445-1447.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/731-
dc.description.abstract直接芳基化聚合反應是一個已被發展用以合成共軛高分子的方法,相較於傳統偶合反應更符合原子經濟且較節省合成成本。另一方面,水溶性共軛高分子因同時具備優異的光電性質與親水的溶解特性,在生醫相關領域應用十分廣泛,生物感應或細胞顯影尤為熱門,然而,於過往文獻中,絕大部分的合成皆以傳統偶合反應進行,且以有機溶劑作為反應條件,相較於純水,有機溶劑是一種毒性較高且對環境較不友善的反應媒介,在純水相中使用直接芳基化法聚合共軛高分子的研究尚未有文獻記載,因此,本實驗提出於水相中進行直接芳基化聚合反應,以芴和噻吩衍生物為單體,進一步調控反應條件如:反應溫度、時間、鈀金屬配位基及各項反應試劑等,試圖得到水相鈀催化直接芳基化聚合反應之最佳化條件。我們發現部分聚合產物擁有異常的吸收光譜,藉由理論計算的輔助,合理地解釋其產生機制。此外,凝膠滲透層析儀(GPC)指出反應產物的分散係數異常的低(Đ = ~1.09),透過一系列的實驗驗證,發現高分子鏈會因其主鏈與側鏈的親疏水性不同,而導致構型改變的結果,進而使GPC所測得的分散係數與分子量的下降。zh_TW
dc.description.abstractDirect arylation polymerization (DArP) has been developed to synthesize conjugated polymers. Compared to the conventional cross-coupling methods, DArP exhibits atomic economy and reduces the synthetic cost. On the other hand, with the decent optoelectronic characteristics and outstanding water solubility, water-soluble conjugated polymers are widely used in biomedical science, especially in biosensor or cell imaging. However, most of the reactions were achieved by traditional cross-coupling methods. Also, the environmental media are usually organic solvents which are more eco-unfriendly than water. Herein, aqueous palladium-catalyzed direct arylation polymerization is utilized to synthesize conjugated polymers. Fluorene and thiophene derivatives are chosen as the reaction monomers and optimization of polymerization conditions was performed by varying temperature, time, loading amount, base, and ligand. It was found that certain polymers provide extraordinary profiles in absorption spectra, which can be elucidated with the assistance of theoretical computation. Moreover, the synthesized polymers exhibit nearly monodispersity (Đ = ~1.09), which can be rationalized by the formation of aggregates on account of the hydrophobic and hydrophilic interactions.en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:00:14Z (GMT). No. of bitstreams: 1
ntu-108-R06549006-1.pdf: 8896624 bytes, checksum: 3bcf58c39e0becfb87013dc4372feed0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第1章 緒論 1
1-1 有機共軛高分子 1
1-1-1 有機共軛高分子聚合方法 1
1-2 直接芳基化法 3
1-2-1 直接芳基化法聚合共軛高分子 7
1-3 水溶性共軛高分子 11
1-3-1 水溶性共軛高分子的合成 13
1-3-2 水相環境之聚合反應 19
1-4 自折疊效應 21
1-5 研究動機 23
第2章 結果與討論 25
2-1 單體的合成與鑑定 25
2-2 以磷配位基進行直接芳基化聚合反應 29
2-2-1 配位基的自我聚集效應 48
2-3 以嘧啶配位基進行直接芳基化聚合反應 53
2-4 水溶性高分子的自折疊效應 62
第3章 結論 65
第4章 實驗 67
4-1 試藥 67
4-2 實驗儀器 67
4-2-1 核磁共振光譜儀(Nuclear Magnetic Reasonance, NMR) 67
4-2-2 質譜儀(Mass Spectrometry, MS) 68
4-2-3 凝膠滲透層析儀(Gel Permeation Chromatography, GPC) 68
4-2-4 紫外光可見光吸收光譜儀(Uv-Vis Spectrophotometer) 68
4-2-5 粒徑/介面電位分析儀(Particle Sizing and Zeta Potential) 68
4-2-6 基質輔助雷射脫附游離飛行時間質譜儀(Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry, MALDI-TOF) 69
4-3 合成 69
第5章 參考文獻 78
第6章 附錄 89
dc.language.isozh-TW
dc.subject自摻雜效應zh_TW
dc.subject直接芳基化法zh_TW
dc.subject水溶性共軛高分子zh_TW
dc.subject水相環境zh_TW
dc.subject自摺疊效應zh_TW
dc.subjectDirect-arylationen
dc.subjectSelf-doping effecten
dc.subjectSelf-folding effecten
dc.subjectAqueous mediaen
dc.subjectWater-soluble conjugated polymersen
dc.title水相環境中以鈀催化直接芳基化聚合反應合成水溶性高分子zh_TW
dc.titleAqueous Palladium-Catalyzed Direct-Arylation Polymerizationen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義(Leeyih Wang),劉沂欣(Yi-Hsin Liu),游文岳(Wen-Yueh Yu)
dc.subject.keyword直接芳基化法,水溶性共軛高分子,水相環境,自摺疊效應,自摻雜效應,zh_TW
dc.subject.keywordDirect-arylation,Water-soluble conjugated polymers,Aqueous media,Self-folding effect,Self-doping effect,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201902024
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf8.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved