請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73198完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Ying-Ching Lai | en |
| dc.contributor.author | 賴盈靜 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:22:02Z | - |
| dc.date.available | 2021-07-19 | |
| dc.date.copyright | 2019-07-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-03 | |
| dc.identifier.citation | [1]. Rodríguez-Cerdeira C, Carnero Gregorio M, López-Barcenas A, et al. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Mediators Inflamm. 2017;2017:3264217.
[2]. Achkar T, Tarhini AA. The use of immunotherapy in the treatment of melanoma. J Hematol Oncol. 2017 Apr 24;10(1):88. [3]. Tas F. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J Oncol. 2012;2012:647684. [4]. Sloan AE, Nock CJ, Einstein DB. Diagnosis and treatment of melanoma brain metastasis: a literature review. Cancer Control. 2009 Jul;16(3):248-55. [5]. Alqahtani S, Alhefdhi AY, Almalik O, et al. Primary oral malignant melanoma metastasis to the brain and breast: A case report and literature review. Oncol Lett. 2017 Aug;14(2):1275-1280. [6]. Chukwueke U, Batchelor T, Brastianos P. Management of Brain Metastases in Patients With Melanoma. J Oncol Pract. 2016 Jun;12(6):536-42. [7]. Proboka G, Tilgase A, Isajevs S. Melanoma Unknown Primary Brain Metastasis Treatment with ECHO-7 Oncolytic Virus Rigvir: A Case Report. Front Oncol. 2018 Feb 26;8:43. [8]. Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers. 2015;4(1):e1129476. [9]. O'Reilly MA, Hynynen K. Ultrasound enhanced drug delivery to the brain and central nervous system. Int J Hyperthermia. 2012;28(4):386-96. [10]. Burgess A, Hynynen K. Drug delivery across the blood-brain barrier using focused ultrasound. Expert Opin Drug Deliv. 2014 May;11(5):711-21. [11]. Konofagou EE, Tung YS, Choi J, Deffieux T, Baseri B, Vlachos F. Ultrasound-induced blood-brain barrier opening. Curr Pharm Biotechnol. 2012;13(7):1332-45. [12]. Konofagou EE. Optimization of the ultrasound-induced blood-brain barrier opening. Theranostics. 2012;2(12):1223-37. [13]. Arvanitis CD, Askoxylakis V, Guo Y. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. PNAS September 11, 2018; 115 (37) E8717-E8726. [14]. van Tellingen O, Yetkin-Arik B, de Gooijer MC. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015 Mar;19:1-12. [15]. Wu SK, Chiang CF, Hsu YH, et al. Pulsed-wave low-dose ultrasound hyperthermia selectively enhances nanodrug delivery and improves antitumor efficacy for brain metastasis of breast cancer. Ultrason Sonochem. 2017 May;36:198-205. [16]. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70. [17]. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014 Oct-Dec;10(4):853-8. [18]. Wakharde AA, Awad AH, Bhagat A, Karuppayil SM. Synergistic Activation of Doxorubicin against Cancer: A Review. Am J Clin Microbiol Antimicrob. 2018;1(2): 1009. [19]. Xu L, Wang W, Sheng YC, Zheng QS. Pharmacokinetics and its relation to toxicity of pegylated-liposomal doxorubicin in Chinese patients with breast tumours. J Clin Pharm Ther. 2010 Oct;35(5):593-601. [20]. Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011 Jul;21(7):440-6. [21]. Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. Journal of Medical Ultrasound. 2014; 22(4):183-193. [22]. Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles--Promises and pitfalls. Int J Hyperthermia. 2016;32(1):76-88. [23]. Sheetal J, Pramod KS, Rishabha M. Hyperthermia: Role and Risk Factor for Cancer Treatment. Achievements in the Life Sciences. 2016;10(2):161-167 [24]. Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. Hyperthermia: How Can It Be Used?. Oman Med J. 2016;31(2):89-97. [25]. Yohsuke Y, Keishi T, Yasunobu K, Masakazu Y. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer Metastasis Treat 2017;3:218-30. [26]. Yu T1, Wang Z, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy. Ultrason Sonochem. 2004 Apr;11(2):95-103. [27]. Santos MA, Goertz DE, Hynynen K. Focused Ultrasound Hyperthermia Mediated Drug Delivery Using Thermosensitive Liposomes and Visualized With in vivo Two-Photon Microscopy. Theranostics. 2017;7(10):2718-2731. [28]. van Rhoon GC, Samaras T, Yarmolenko PS, et al. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol. 2013 Aug;23(8):2215-27. [29]. Prajna M, Bismita N, R.K.Dey. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences. 2016;11(3)337-348. [30]. Farhane Z, Bonnier F, Howe O, et al. Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair. J Biophotonics. 2018 Jan;11(1). [31]. Andrew KWW, Chandra MS. A Review of Low-Intensity Ultrasound for Cancer Therapy. Ultrasound Med Biol. 2015 Apr; 41(4): 905–928. [32]. Yu T, Li SL, Zhao JZ, Mason TJ. Ultrasound: a chemotherapy sensitizer. Technol Cancer Res Treat. 2006 Feb;5(1):51-60. [33]. Wainwright DA, Chang AL, Dey M. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014 Oct 15;20(20):5290-301. [34]. Aboody KS, Najbauer J, Schmidt NO, et al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol. 2006;8(2):119-26. [35]. Mark SK, Jin Y, Hong Z, et al. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016; 14: 1. [36]. Beug ST, Beauregard CE, Healy C, et al. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. 2017 Feb 15;8. [37]. Irtenkauf SM, Sobiechowski S, Hasselbach LA, et al. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research. Comp Med. 2017;67(4):300-314. [38]. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800. [39]. McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K. MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med. 2004 May;51(5):913-23. [40]. Yao L, Xue X, Yu P, et al. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. [41]. Kumar A, Gautam B, Dubey C, et al. A REVIEW: ROLE OF DOXORUBICIN IN TREATMENT OF CANCER. IJPSR, 2014; Vol. 5(10): 4117-4128. [42]. Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist. 2003;8 Suppl 2:3-9. [43]. Liu W, Dowling JP, Murray WK. Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas. Arch Dermatol. 2006 Dec;142(12):1551-8. [44]. Carey K. Anders, Barbara Adamo, Olga Karginova, et al. Pharmacokinetics and Efficacy of PEGylated Liposomal Doxorubicin in an Intracranial Model of Breast Cancer. PLoS One. 2013; 8(5): e61359. [45]. Kibria G, Hatakeyama H, Akiyama K, et al. Comparative study of the sensitivities of cancer cells to doxorubicin, and relationships between the effect of the drug-efflux pump P-gp. Biol Pharm Bull. 2014;37(12):1926-35. [46]. Couture O, Foley J, Kassell NF, et al. Review of ultrasound mediated drug delivery for cancer treatment: updates from pre-clinical studies. Transl Cancer Res. 2014;3(5):494-511. [47]. Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv. 2006 Nov;3(6):713-26. [48]. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep. 2015 Mar;11(3):1566-72. [49]. Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma. 2018;127(2):175–186. [50]. Ludwig R, Teran FJ, Teichgraeber U, Hilger I. Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer. Int J Nanomedicine. 2017;12:1009–1018. [51]. Chen DL, Engle JT, Griffin EA, et al. Imaging caspase-3 activation as a marker of apoptosis-targeted treatment response in cancer. Mol Imaging Biol. 2015;17(3):384–393. [52]. Aroui S, Brahim S, De Waard M, et al. Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett. 2009 Nov 18;285(1):28-38. [53]. Sengupta S, Balla VK. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res. 2018 Jun 20;14:97-111. [54]. Wieder R. TUNEL assay as a measure of chemotherapy-induced apoptosis. Methods Mol Med. 2005;111:43-54. [55]. Bai WK, Shen E, Hu B. The induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res. 2012;24(4):368–373. [56]. Romano S, Nappo G, Calì G, et al. Synergy between enzastaurin doxorubicin in inducing melanoma apoptosis. Pigment Cell Melanoma Res. 2013 Nov;26(6):900-11. [57]. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006 Aug 7;25(34):4798-811. [58]. Hata AN, Engelman JA, Faber AC. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov. 2015;5(5):475–487. [59]. Chaitanya GV, Steven AJ, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010;8:31. Published 2010 Dec 22. [60]. Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci. 2015;16(2):2942–2955. Published 2015 Jan 28. [61]. Goldstein JC, Waterhouse NJ, et al. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000 Mar;2(3):156-62. [62]. Chaitanya GV, Steven AJ, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010;8:31. Published 2010 Dec 22. [63]. Mishraa P, Nayakb B, Dey RK. PEGylation in anti-cancer therapy: An overview. AJPS. Asian J Pharm Sci, 2016,V11(3): 337-348. [64]. Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?. Theranostics. 2013;4(1):81-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73198 | - |
| dc.description.abstract | 研究背景與目的: 人類黑色素瘤是一種不正常增生之惡性腫瘤,晚期黑色素瘤的特性具高度侵略性、轉移性與致死率,其中將近40-50% 患有第四期黑色素瘤的病患確診轉移到腦部,在所有癌症中轉移到腦部排名第三位。一旦黑色素瘤轉移到腦部難以有效控制腫瘤生長,究其無法有效治療的原因是因為血腦障壁/血腫瘤障壁的限制,其調控所有物質進出避免病原體或危害物質入侵大腦,因此黑色素腦腫瘤難以單純使用藥物治療。在本研究中,我們將探討低劑量脈衝超音波結合聚乙二醇化微脂體包覆化療藥物阿黴素 (doxorubicin),對黑色素瘤轉移到腦部腫瘤的治療效果,低劑量脈衝超音波能非侵入式標的腦中腫瘤組織進行熱升溫效果,在不傷害正常腦組織的情形下,使更多化療藥物累積腫瘤組織,提升整體抗癌效果。
實驗材料與方法: 本研究利用細胞實驗與動物實驗探討合併抗癌效果。細胞實驗使用黑色素癌細胞夾帶綠色螢光蛋白 B16F10-GFP 細胞,利用不同濃度藥物 pegylated liposomal doxorubicin (PLD) 處理不同時間後 (24 與 72 小時),測試其細胞存活率,之後再結合低劑量脈衝式超音波與固定濃度 PLD 作用下 (共分為控制組、藥物 PLD 組、超音波組以及藥物 PLD+超音波合併治療組),進一步測試細胞存活率分析。動物實驗方面將 B16F10-GFP 細胞直接種入 C57BL/6 黑鼠腦部,實驗組別分為控制組、藥物 PLD 組、超音波組以及藥物 PLD+超音波合併治療組,動物使用藥物濃度 5 mg/kg 靜脈注射後體循環一分鐘,再施打超音波參數頻率為 0.5 MHz、脈衝重複頻率 1000 Hz,工作週期為 50%,施打時間 10 分鐘,利用非侵入式影像系統觀察動物不同天數腫瘤生長趨勢,並將動物犧牲後取下組織測定其藥物含量以及做切片觀察腫瘤的型態、細胞凋亡情形,最後會測試腫瘤組織內蛋白表現變化。 實驗結果: 從細胞實驗上觀察到單純藥物 PLD 在不同時間作用下對細胞有不同抑制效果,且當固定藥物濃度再結合超音波施打,會對細胞產生更顯著的生長抑制作用,合併治療組會有較好的細胞生長影響。在動物實驗方面確定超音波參數,測試其安全性以及藥物有效傳輸性。腫瘤生長大小方面合併治療組的腫瘤相較其他組別冷光表現最少,有效抑制腫瘤大小;取下組織測定藥物濃度發現,合併治療組的腫瘤區域藥物含量高於其正常腦組織測得藥量,而單純藥物組中不論腫瘤組織或正常腦組織,都低於合併治療組當中腫瘤組織藥物含量;在觀察腫瘤 H&E 染色切片中,控制組與單純藥物組腫瘤會持續分裂,單純超音波組與合併治療組受超音波影響細胞排列,且合併治療組會有較明顯藥物影響情形。切片觀察中,PLD 在組織分布性會集中分布,且根據定量結果顯示合併治療組相對單純藥物組會有更多藥物累積;IHC 標的特殊蛋白 (Ki-67 及 Caspase-3)、TUNEL 檢測以及西方墨點法探討細胞凋亡相關蛋白質的表現變化,都顯示合併治療組有較多的細胞凋亡現象。 結論: 經由細胞與動物實驗證實經由低劑量脈衝式超音波熱作用,奈米藥物能成功穿透血腫瘤障壁,在不影響正常腦組織的情況下藥物累積到腫瘤處,進一步抑制腫瘤的生長。 | zh_TW |
| dc.description.abstract | Background and Purpose: Melanoma is a malignant tumor that arises from uncontrolled proliferation of melanocytes. Advanced melanoma is the most aggressive, metastatic and deadly skin cancer, and 40-50% patients with advanced melanoma are diagnosed with brain metastasis in clinic. The main reason that melanoma brain metastasis remain untreatable is due to the blood-brain-barrier/blood-tumor-barrier (BBB/BTB). In this study, the synergistic effects of low-dose pulsed-wave focused ultrasound hyperthermia (pUH) on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for melanoma brain metastases are investigated.
Materials and Methods: In this study, the synergistic effects of pulsed-wave ultrasound hyperthermia and anticancer drug PLD in vitro and in vivo were investigated. B16F10 melanoma cells transfected with GFP were used in the experiments. Different concentration of PLD with/without pUH were used in the cultured cells for 24 and 72 h. Cell viability was evaluated by MTT assay. In animal models, B16F10-GFP cells were injected into the female striatum of C57BL/6 mice, and 6 days later the mice were divided into four groups (control, PLD, pUH, PLD+pUH) and received treatment. The mice were I.V. injected with PLD (5 mg/kg) with/without pUH one-minute after drug injection. The parameters of ultrasound were frequency at 500 kHz, PRF at 1000 Hz, duty cycle at 50%, and sonication duration at 10 min. The tumor growth was captured and assessed every other day by IVIS system. DOX in brain and tumor tissues were quantified after animal sacrification. The tissues were histologically processed with H&E, PLD distribution, IHC, TUNEL assay, and evaluation of apoptosis-related protein expression in the tumor was conducted via Western blot. Results: The inhibitory effects of PLD alone on cancer cells depended on the concentration and treatment time. PLD with ultrasound sonication caused significant inhibition on the cancer cells (p<0.0001). In vivo, the parameters of ultrasound were determined by the safety of hyperthermia on normal brain tissue and the delivery of the drug to the brain tumor. The tumor size and morphology were influenced with PLD and pUH treatment and inhibited the tumor growth development. Drug was cumulated much more in the tumor tissue than in the normal brain for the combined therapy. The therapeutic efficacy of PLD plus ultrasound hyperthermia were demonstrated by IHC (Ki-67 and Caspase-3 staining) and TUNEL assay. PLD+pUH induced more apoptosis on the melanoma brain tumor by Western blot analysis. Conclusion: These results support that low-dose pulsed-wave ultrasound hyperthermia could enhance the PLD delivery into brain tumors. The anticancer drug could be effectively cumulated in the sonicated tumor and further inhibited the tumor growth without damaging the normal brain tissues. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:22:02Z (GMT). No. of bitstreams: 1 ntu-108-R06548033-1.pdf: 4148847 bytes, checksum: a39289969de8bd0e81457f1accbcb012 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT iii 致謝 v 縮寫與翻譯對照表 vi 目錄 viii 圖目錄 xi 第一章 緒論 1 1.1 黑色素瘤腦轉移與治療簡介 1 1.2 聚乙二醇化阿黴素微脂體 (PLD) 2 1.3 脈衝超音波熱治療 (pUH) 4 1.4 腫瘤細胞株 4 1.5 研究目的 5 第二章 材料與方法 7 2.1 腫瘤細胞株 7 2.2 實驗動物 7 2.3 聚乙二醇化阿黴素微脂體 (PLD) 7 2.4 MTT assay 細胞存活率分析 7 2.5 動物實驗腫瘤建立 10 2.6 超音波系統與儀器參數設定 11 2.7 超音波治療熱電偶溫度量測 12 2.8 動物實驗 12 2.9 動物腫瘤生長大小定量 15 2.10 藥物 PLD 於動物組織定量分析 15 2.11 腦部組織切片染色 16 2.12 西方墨點法 18 2.13 數值統計與分析 19 第三章 實驗結果 20 3.1 細胞實驗 20 3.1.1 藥物 PLD 對癌細胞作用 72 小時存活率分析 (長時間) 20 3.1.2 藥物 PLD 對癌細胞作用 24 小時存活率分析 (短時間) 21 3.1.3 藥物 PLD 結合超音波對癌細胞作用後存活率分析 (短時間) 21 3.2 動物實驗 22 3.2.1 種植不同癌細胞數量測試 22 3.2.2 熱電偶溫升測試 24 3.2.3 超音波對組織通透性測試 24 3.2.4 動物腦部腫瘤大小定量分析 25 3.2.5 動物體重變化 27 3.2.6 動物存活率分析 27 3.2.7 正常腦組織與腫瘤組織內 PLD 定量分析 28 3.3 組織切片分析 30 3.3.1 H&E 染色分析 30 3.3.2 PLD 於切片分布觀察 32 3.3.3 IHC 染色分析 34 3.3.4 TUNEL 染色分析 35 3.4 西方墨點法 37 3.4.1 觀察對腫瘤組織內凋亡蛋白變化 37 第四章 討論 38 第五章 結論與未來展望 48 文獻參考 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脈衝超音波熱升溫 | zh_TW |
| dc.subject | 黑色素腦腫瘤 | zh_TW |
| dc.subject | 血腦障壁/血腫瘤障壁 | zh_TW |
| dc.subject | blood brain barrier/blood tumor barrier | en |
| dc.subject | melanoma brain metastasis | en |
| dc.subject | focused ultrasound hyperthermia | en |
| dc.title | 探討脈衝超音波熱治療結合抗癌奈米藥物對轉移性黑色素腦腫瘤之治療效果 | zh_TW |
| dc.title | Investigating Anticancer Effects of Nanodrug and Pulsed-wave Ultrasound Hyperthermia on Melanoma Brain Metastases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.oralexamcommittee | 謝銘鈞(Ming-Jium Shieh),張富雄(Fu-Hsiung Chang) | |
| dc.subject.keyword | 黑色素腦腫瘤,血腦障壁/血腫瘤障壁,脈衝超音波熱升溫, | zh_TW |
| dc.subject.keyword | focused ultrasound hyperthermia,blood brain barrier/blood tumor barrier,melanoma brain metastasis, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201901215 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
