請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73186完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Jen-Ni Wu | en |
| dc.contributor.author | 吳真妮 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:21:27Z | - |
| dc.date.available | 2024-07-17 | |
| dc.date.copyright | 2019-07-17 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-04 | |
| dc.identifier.citation | 1. Hanahan, Douglas, and Robert A. Weinberg. 'Hallmarks of cancer: the next generation.' cell 144.5 (2011): 646-674.
2. Anderson, Robin L., et al. 'A framework for the development of effective anti-metastatic agents.' Nature Reviews Clinical Oncology (2018): 1. 3. Plaks, Vicki, Charlotte D. Koopman, and Zena Werb. 'Circulating tumor cells.' Science 341.6151 (2013): 1186-1188. 4. Massagué, Joan, and Anna C. Obenauf. 'Metastatic colonization by circulating tumour cells.' Nature 529.7586 (2016): 298. 5. Dasgupta, Arko, Andrea R. Lim, and Cyrus M. Ghajar. 'Circulating and disseminated tumor cells: harbingers or initiators of metastasis?.' Molecular oncology 11.1 (2017): 40-61. 6. Zhang, Qun, et al. 'Patterns and functional implications of platelets upon tumor “education”.' The international journal of biochemistry & cell biology 90 (2017): 68-80. 7. Gay, Laurie J., and Brunhilde Felding-Habermann. 'Contribution of platelets to tumour metastasis.' Nature Reviews Cancer 11.2 (2011): 123. 8. Leblanc, Raphael, and Olivier Peyruchaud. 'Metastasis: new functional implications of platelets and megakaryocytes.' Blood 128.1 (2016): 24-31. 9. Plantureux, Léa, et al. 'Effects of platelets on cancer progression.' Thrombosis research 164 (2018): S40-S47. 10. Schadendorf, Dirk, et al. 'Melanoma.' Nature reviews Disease primers 1 (2015): 15003. 11. Fitzmaurice, Christina, et al. 'Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study.' JAMA oncology 3.4 (2017): 524-548. 12. Merlino, Glenn, et al. 'The state of melanoma: challenges and opportunities.' Pigment cell & melanoma research 29.4 (2016): 404-416. 13. Millet, Antoine, et al. 'Metastatic melanoma: insights into the evolution of the treatments and future challenges.' Medicinal research reviews 37.1 (2017): 98-148. 14. Mattia, Gianfranco, et al. 'Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies.' Cell death & disease 9.2 (2018): 112. 15. Denslow, Agnieszka, et al. 'Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models.' PloS one12.12 (2017): e0188740. 16. Ballerini, Patrizia, et al. 'P2Y12 Receptors in Tumorigenesis and Metastasis.' Frontiers in Pharmacology 9 (2018): 66. 17. Gresele, P., et al. 'Platelet-targeted pharmacologic treatments as anti-cancer therapy.' Cancer and Metastasis Reviews 36.2 (2017): 331-355. 18. Yu, Le-Xing, et al. 'Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein.' Nature communications 5 (2014): 5256. 19. Mezouar, Soraya, et al. 'Inhibition of platelet activation prevents the P‐selectin and integrin‐dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.' International journal of cancer 136.2 (2015): 462-475. 20. Longley, Daniel B., D. Paul Harkin, and Patrick G. Johnston. '5-fluorouracil: mechanisms of action and clinical strategies.' Nature reviews cancer 3.5 (2003): 330. 21. Wilson, Peter M., et al. 'Standing the test of time: targeting thymidylate biosynthesis in cancer therapy.' Nature reviews Clinical oncology 11.5 (2014): 282. 22. Vincent, Julie, et al. '5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell–dependent antitumor immunity.' Cancer research (2010): 0008-5472. 23. Bracci, L., et al. 'Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer.' Cell death and differentiation 21.1 (2014): 15. 24. Galluzzi, Lorenzo, et al. 'Immunological effects of conventional chemotherapy and targeted anticancer agents.' Cancer cell 28.6 (2015): 690-714. 25. Toraya-Brown, Seiko, and Steven Fiering. 'Local tumour hyperthermia as immunotherapy for metastatic cancer.' International Journal of Hyperthermia 30.8 (2014): 531-539. 26. Datta, N. R., et al. 'Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future.' Cancer treatment reviews 41.9 (2015): 742-753. 27. Speed, C. A. 'Therapeutic ultrasound in soft tissue lesions.' Rheumatology 40.12 (2001): 1331-1336. 28. Hildebrandt, Bert, et al. 'The cellular and molecular basis of hyperthermia.' Critical reviews in oncology/hematology 43.1 (2002): 33-56. 29. Roti Roti, Joseph L. 'Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events.' International Journal of hyperthermia 24.1 (2008): 3-15. 30. Izadifar, Zahra, Paul Babyn, and Dean Chapman. 'Mechanical and biological effects of ultrasound: A review of present knowledge.' Ultrasound in medicine & biology 43.6 (2017): 1085-1104. 31. Ning, Rui, et al. 'Gambogic acid potentiates clopidogrel-induced apoptosis and attenuates irinotecan-induced apoptosis through down-regulating human carboxylesterase 1 and-2.' Xenobiotica 46.9 (2016): 816-824. 32. Wu, Hai-Lu, et al. 'Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation.' Toxicology 304 (2013): 41-48. 33. Shenoy, Vikram S., Rajiv P. Gude, and Rayasa S. Ramachandra Murthy. 'In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines.' International Nano Letters 3.1 (2013): 36. 34. Lee, Sol Hwa, et al. 'Anti angiogenic effects of resveratrol in combination with 5 fluorouracil on B16 murine melanoma cells.' Molecular medicine reports 12.2 (2015): 2777-2783. 35. Silva, Valdenizia Rodrigues, et al. 'A ruthenium-based 5-fluorouracil complex with enhanced cytotoxicity and apoptosis induction action in HCT116 cells.' Scientific reports 8.1 (2018): 288. 36. Hammond, William A., Abhisek Swaika, and Kabir Mody. 'Pharmacologic resistance in colorectal cancer: a review.' Therapeutic advances in medical oncology 8.1 (2016): 57-84. 37. Garcia, Mónica Pereira, José Roberto Tinoco Cavalheiro, and Maria Helena Fernandes. 'Acute and long-term effects of hyperthermia in B16-F10 melanoma cells.' PloS one 7.4 (2012): e35489. 38. Jin, Hekun, et al. 'Hyperthermia inhibits the proliferation and invasive ability of mouse malignant melanoma through TGF-β1.' Oncology reports 29.2 (2013): 725-734. 39. Reagan-Shaw, Shannon, Minakshi Nihal, and Nihal Ahmad. 'Dose translation from animal to human studies revisited.' The FASEB journal 22.3 (2008): 659-661. 40. Malet-Martino, M., and R. Martino. 'Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review.' The oncologist 7.4 (2002): 288-323. 41. Qu, Xiaoyi, et al. 'Antitumor effects of anti-CD40/CpG immunotherapy combined with gemcitabine or 5-fluorouracil chemotherapy in the B16 melanoma model.' International immunopharmacology 17.4 (2013): 1141-1147. 42. Ichikawa, Wataru, et al. 'Orotate phosphoribosyltransferase gene polymorphism predicts toxicity in patients treated with bolus 5-fluorouracil regimen.' Clinical cancer research 12.13 (2006): 3928-3934. 43. Hajj, Aline, et al. 'Lethal hepatotoxicity following 5-fluorouracil/cisplatin chemotherapy: a relevant case report.' Personalized medicine 14.3 (2017): 197-201. 44. Otsubo, Dai, et al. 'Early-phase treatment by low-dose 5-Fluorouracil or primary tumor resection inhibits MDSC-mediated lung metastasis formation.' Anticancer research35.8 (2015): 4425-4431. 45. Jiang, Xi-Ling, et al. 'Clinical pharmacokinetics and pharmacodynamics of clopidogrel.' Clinical pharmacokinetics54.2 (2015): 147-166. 46. Goubran, Hadi A., et al. 'Platelets effects on tumor growth.' Seminars in oncology. Vol. 41. No. 3. WB Saunders, 2014. 47. Kubo, Hiroshi, et al. 'Primary tumors limit metastasis formation through induction of IL15-mediated cross-talk between patrolling monocytes and NK cells.' Cancer immunology research (2017). 48. Ghiringhelli, François, Melanie Bruchard, and Lionel Apetoh. 'Immune effects of 5-fluorouracil: Ambivalence matters.' Oncoimmunology 2.3 (2013): e23139. 49. Ito, Akira, et al. 'Screening of cytokines to enhance vaccine effects of heat shock protein 70-rich tumor cell lysate.' Journal of bioscience and bioengineering 100.1 (2005): 36-42. 50. Kong, Garheng, Rod D. Braun, and Mark W. Dewhirst. 'Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.' Cancer research 61.7 (2001): 3027-3032. 51. Jha, Sheetal, Pramod Kumar Sharma, and Rishabha Malviya. 'Hyperthermia: role and risk factor for cancer treatment.' Achievements in the Life Sciences 10.2 (2016): 161-167. 52. Gimotty, Phyllis A., et al. 'Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma.' Journal of Clinical Oncology23.31 (2005): 8048-8056. 53. Ladstein, Rita G., et al. 'Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma.' BMC cancer 10.1 (2010): 140. 54. Oei, Arlene L., et al. 'Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all.' Radiation Oncology 10.1 (2015): 165. 55. Elmore, Susan. 'Apoptosis: a review of programmed cell death.' Toxicologic pathology 35.4 (2007): 495-516. 56. McIlwain, David R., Thorsten Berger, and Tak W. Mak. 'Caspase functions in cell death and disease.' Cold Spring Harbor perspectives in biology 5.4 (2013): a008656. 57. Ahmed, Kanwal, Yoshiaki Tabuchi, and Takashi Kondo. 'Hyperthermia: an effective strategy to induce apoptosis in cancer cells.' Apoptosis 20.11 (2015): 1411-1419. 58. Baig, S., et al. 'Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?.' Cell death & disease 7.1 (2016): e2058. 59. Finsterer, Josef, and Sinda Zarrouk-Mahjoub. 'Mitochondrial toxicity of cardiac drugs and its relevance to mitochondrial disorders.' Expert opinion on drug metabolism & toxicology11.1 (2015): 15-24. 60. Saraste, Antti, and Kari Pulkki. 'Morphologic and biochemical hallmarks of apoptosis.' Cardiovascular research 45.3 (2000): 528-537. 61. Samali, Afshin, et al. 'Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins.' FEBS letters 461.3 (1999): 306-310. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73186 | - |
| dc.description.abstract | 研究背景與目的:腫瘤細胞在增殖過程中表現出多樣的特性,以抵抗外來壓力誘導之死亡並能夠抵禦人體免疫系統之攻擊。其中惡性腫瘤因具有轉移之能力而難以治療,並為癌症相關死亡之主因,而黑色素瘤即為其中一種。雖為皮膚癌中較少見的一種,但黑色素瘤因其高轉移性而受到關注,且近年來其發病率亦有增加之趨勢。然而,目前用於黑色素瘤之治療如化學治療、標靶治療及免疫療法皆有各自之困境,因此,本研究期望聯合氯吡格雷(clopidogrel, CLO)、5-氟尿嘧啶(5-fluorouracil, 5-FU)及脈衝式超音波熱治療(pulsed-wave ultrasound hyperthermia, pUSHT)提供一可能之黑色素瘤治療方案,以多面向的策略抑制腫瘤進程,達到低副作用並具系統性之治療效果。
實驗材料與方法:本研究主要分為細胞實驗、動物實驗及腫瘤樣本分析此3大部分。細胞實驗使用B16F10黑色素瘤細胞株,並利用細胞存活率試驗探討CLO、5-FU及熱治療(hyperthermia, HT)對於此細胞株之生長抑制能力,其中CLO使用之濃度為0、0.1、0.5、1、1.5、2、2.5及5 mM ,5-FU為0、0.1、1、10、50、100、500及1000 μM,HT (43℃)之時間則為0、15、30、60分鐘。動物實驗使用C57BL/6J母鼠(周齡:6-8週;體重:18.98 ± 1.19 g),並於其皮下接種B16F10細胞以建立黑色素瘤之小鼠模型。治療手段方面則分為3部分進行探討,分別為:(1) 不同劑量(35、70及105 mg/kg)之5-FU;(2) 合併CLO (10 mg/kg)與5-FU (35 mg/kg)之治療,及(3) 前述兩種藥物聯合pUSHT治療對於腫瘤生長之抑制效果。治療時pUSHT使用之參數如下:探頭發射頻率為3 MHz、強度為0.55 W/cm2、工作週期為50%,總施打時間則為15分鐘。動物實驗之治療成效皆以腫瘤體積及小鼠之存活率呈現,並以體重變化評估治療手段對小鼠造成之生存壓力。腫瘤樣本分析的部分,則於治療起始日後第9日將各組小鼠犧牲、並取下其背上之腫瘤,以進行後續之分析,包含蘇木精-伊紅染色(hematoxylin and eosin stain, H&E stain)、以免疫組織化學染色(immunohistochemistry, IHC)標定Ki-67與胱天蛋白酶-3(caspase-3)、末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記(terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL)檢測、及西方墨點法(Western blot, WB)。 實驗結果:細胞實驗之結果表明,單獨治療時,CLO之濃度達2.5 mM、5-FU之濃度達1 μM,或HT 15分鐘皆會與控制組(Control)達顯著性之統計差異(p < 0.05),而合併治療雖皆可使B16F10細胞之存活率較單獨治療再降低,但CLO於細胞生長抑制之貢獻不如5-FU及HT多。動物實驗方面,第一部分動物實驗之結果顯示,35、70、105 mg/kg三種劑量之5-FU治療組的腫瘤體積差異皆與Control組達到統計顯著(p < 0.05),其中35 mg/kg之抑制效果雖不如70及105 mg/kg,但因對小鼠造成之負擔較小,於存活率的表現上反而較另兩種劑量佳,並與Control組有顯著性之差異(p < 0.05)。第二部分動物實驗結果表明,單獨使用10 mg/kg之CLO、35 mg/kg之5-FU及兩者合併使用時於腫瘤體積上皆與Control組達到統計顯著(p < 0.05),且藥物合併使用後之腫瘤抑制效果較單獨使用更好。最後一部分之動物實驗則說明,單獨使用pUSHT及pUSHT聯合兩種藥物治療與Control組相比,皆有顯著抑制腫瘤之效果(p < 0.05),但在小鼠存活率之表現上聯合治療仍是最好的,並與其他組別達統計顯著(p < 0.05)。腫瘤樣本分析方面,由H&E染色可見Control組之腫瘤組織最為完整且分裂細胞多,其餘治療組別則或多或少對腫瘤組織產生破壞;IHC之染色結果則顯示Control組及5-FU組有較高之Ki-67表現,而CLO+5-FU+pUSHT組則較其他組別有更多且廣泛之caspase-3表現;而WB之結果表明,CLO+5-FU+pUSHT組於細胞凋亡相關蛋白如BAX、caspase-9及caspase-3之表現量最高;最後,TUNEL檢測之結果同樣顯示,藥物合併治療較單獨治療之細胞凋亡比例高,而增加pUSHT治療則可再提升凋亡細胞之比例,且CLO+5-FU+pUSHT組為Control組之3.5倍。 結論:本研究於細胞實驗中證實CLO、5-FU及HT之合併治療確實具有抑制B16F10黑色素瘤細胞生長之效果;動物模型之結果則顯示,pUSHT聯合CLO及5-FU治療展現出最佳之抑制腫瘤生長的能力,並顯著提升小鼠之存活率,且未對小鼠身體造成過大之負擔。腫瘤樣本分析的部分,則由H&E染色及Ki-67之標定觀察到Control組之腫瘤組織完整且細胞具有較高的增殖活性;並由caspase-3之標定、WB之半定量、以及TUNEL檢測之結果得知,藥物聯合治療及增加pUSHT之治療策略皆有效提升單獨治療誘導細胞凋亡之能力,並與實際於動物模型上所觀察到之抑制腫瘤生長及延長存活率之效益相呼應。 | zh_TW |
| dc.description.abstract | Background: Melanoma is the most aggressive skin cancer and its incidence has continued to rise during the past decades. Surgical resection is the standard therapeutic option for melanoma, while chemotherapy is also needed to slow down the progression of the disease. However, melanoma is often resistant to commonly used anticancer drugs like 5-fluorouracil (5-FU), therefore the treatment effectiveness compromises. Our study aimed to combine 5-FU, Clopidogrel (CLO) and pulsed-wave ultrasound hyperthermia (pUSHT) to provide a potential treatment for melanoma.
Materials and Methods: This research included in-vitro and in-vivo studies and analysis of tumor samples. For in-vitro studies, MTT assay was used to determine the viability of B16F10 murine melanoma cells for the treatment of CLO, 5-FU and 43℃ hyperthermia (HT). The concentrations of CLO were 0, 0.1, 0.5, 1, 1.5, 2, 2.5 and 5 mM, while 5-FU were 0, 0.1, 1, 10, 50, 100, 500 and 1000 μM and the durations of HT were 0, 15, 30 and 60 minutes. For in-vivo studies, 105 B16F10 cells were subcutaneously inoculated on the right back of C57BL/6 mice and the treatment started 7 days later. There were three parts of in-vivo studies. To ensure the treatment efficacy of 5-FU on melanoma, we tested three dosages of 5-FU (35, 70, 105 mg/kg) firstly. Consequently, 5-FU at 35 mg/kg was used in combination with CLO (10 mg/kg) as a dual-drug therapy. At last, 5-FU (35 mg/kg) and CLO (10 mg/kg) were administered together with pUSHT sonication as a triple therapy. The parameters of pUSHT were set at 3 MHz of frequency, 0.55 W/cm2 of intensity, 50% of duty cycle and 15 minutes of treatment duration. Tumor volume and survival rate were assessed to evaluate the treatment efficacy, and body weight of mice was also recorded to test toxicity of treatment. For sample analysis, mice were sacrificed on the next day of final treatment and tumor tissues were collected for analysis, including hematoxylin and eosin (H&E) stain, immunohistochemistry (IHC) stain, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and Western blot (WB). Results: In-vitro results showed that CLO, 5-FU and HT individually could inhibit the growth of B16F10 melanoma cells, while co-treatment reduced the viability of cells more effectively. As for in-vivo results, 5-FU did inhibit tumor growth and 35 mg/kg was safer than 70 and 105 mg/kg. The dual-drug treatment was expected to improve the antitumor effect of 5-FU alone, but with limited improvement. The triple therapy showed that there were significant improvements in terms of tumor growth and survival and no excessive burden to mice (body weight of mice treated with triple therapy did not drop more than 20% during the treatment regimen). H&E stain showed that there were more proliferative tumor cells in the control group. IHC stain revealed more expression of Ki-67 on the control and 5-FU groups, while the group treated with triple therapy had more expression of caspase-3. Furthermore, we performed WB to quantify proteins associated with apoptosis. The results of WB demonstrated that caspase-3 was significantly upregulated in the dual-drug group compared to the groups with single treatment, while pUSHT could further increase the expression of caspase-3 of the dual-drug group. Through quantitative comparison of the apoptotic rate using TUNEL assay, we found that the percentage of cells undergoing apoptosis in the tumor tissues was the greatest (1.85%) in the group treated with triple therapy. Conclusion: In in-vitro study, the combination of CLO, 5-FU and HT inhibits the growth of B16F10 cells. In in-vivo study and tumor sample analysis, the triple therapy induces tumor cell apoptosis by upregulating caspase-3 expression and results in tumor growth retardation effectively. These results suggest that the triple therapy may provide a potential strategy that can reduce tumor progression and prolong survival. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:21:27Z (GMT). No. of bitstreams: 1 ntu-108-R06548039-1.pdf: 11000677 bytes, checksum: 2ae4a8a212b0bcd0cf8890b8376467c4 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要 vi 縮寫與翻譯對照表 ix 目錄 xi 圖目錄 xiv 第一章 緒論 1 1.1 腫瘤 1 1.1.1 腫瘤特性 1 1.1.2 腫瘤轉移 1 1.2 黑色素瘤 2 1.2.1 黑色素瘤之治療方式 3 1.3 氯吡格雷 4 1.3.1 氯吡格雷於腫瘤治療上之應用 4 1.4 5-氟尿嘧啶 5 1.4.1 5-氟尿嘧啶誘發之免疫反應 6 1.5 超音波熱治療 7 1.5.1 超音波之熱效應與非熱效應 7 1.5.2 超音波熱治療誘發之免疫反應 8 1.6 研究目的 9 第二章 材料與方法 10 2.1 實驗材料 10 2.1.1 細胞株及細胞培養 10 2.1.2 實驗動物 10 2.1.3 實驗用藥 10 2.1.4 脈衝式超音波熱治療系統之裝置 11 2.2 實驗流程 12 2.3 實驗方法 13 2.3.1 細胞存活率分析 13 2.3.2 脈衝式超音波治療熱電偶溫度量測 14 2.3.3 脈衝式超音波熱治療之參數設定與儀器設置 15 2.3.4 動物實驗設計 16 2.4 腫瘤組織切片 18 2.4.1 蘇木精-伊紅染色 18 2.4.2 免疫組織化學染色 19 2.5 蛋白質轉漬法 20 2.6 TUNEL檢測 22 2.7 數值統計與分析 23 第三章 實驗結果 24 3.1 細胞存活率分析 24 3.1.1 單獨給予氯吡格雷治療 24 3.1.2 單獨給予5-氟尿嘧啶治療 24 3.1.3 單獨給予熱治療 24 3.1.4 氯吡格雷與5-氟尿嘧啶之合併治療 25 3.1.5 氯吡格雷與熱治療之合併治療 25 3.1.6 5-氟尿嘧啶與熱治療之合併治療 25 3.1.7 氯吡格雷、5-氟尿嘧啶與熱治療之聯合治療 26 3.2 熱電偶溫升測試 27 3.3 動物實驗 28 3.3.1 不同劑量之5-氟尿嘧啶治療模式 28 3.3.2 氯吡格雷與5-氟尿嘧啶合併治療模式 31 3.3.3 氯吡格雷、5-氟尿嘧啶合併脈衝式超音波熱治療 34 3.4 腫瘤組織切片 37 3.4.1 蘇木精-伊紅染色 37 3.4.2 免疫組織化學染色 38 3.5 西方墨點法 40 3.6 TUNEL檢測 43 第四章 討論 45 4.1 細胞存活率分析 45 4.2 動物實驗 47 4.3 腫瘤組織樣本分析 50 第五章 結論與未來展望 55 第六章 參考文獻 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氯?格雷 | zh_TW |
| dc.subject | 5-氟尿嘧啶 | zh_TW |
| dc.subject | 脈衝式超音波熱治療 | zh_TW |
| dc.subject | 黑色素瘤 | zh_TW |
| dc.subject | melanoma | en |
| dc.subject | Clopidogrel | en |
| dc.subject | pulsed-wave ultrasound hyperthermia | en |
| dc.subject | 5-fluorouracil | en |
| dc.title | 探討超音波熱治療強化5-氟尿嘧啶及氯吡格雷聯合癌症治療之療效 | zh_TW |
| dc.title | Enhancement of Ultrasound Hyperthermia for Concomitant Cancer Treatment with 5-fluorouracil and Clopidogrel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.oralexamcommittee | 謝銘鈞(Ming-Jium Shieh),張富雄(Fu-Hsiung Chang) | |
| dc.subject.keyword | 5-氟尿嘧啶,氯?格雷,脈衝式超音波熱治療,黑色素瘤, | zh_TW |
| dc.subject.keyword | 5-fluorouracil,Clopidogrel,pulsed-wave ultrasound hyperthermia,melanoma, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201901117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 10.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
