請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇南維(Nan-Wei Su) | |
dc.contributor.author | Yu-Jhang Jhuang | en |
dc.contributor.author | 莊育璋 | zh_TW |
dc.date.accessioned | 2021-06-17T07:16:39Z | - |
dc.date.available | 2024-07-17 | |
dc.date.copyright | 2019-07-17 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-12 | |
dc.identifier.citation | 1 江舟峰 (2016). 國人飲食中攝入動物用藥之總膳食調查與健康風險評估.
2 江舟峰 (2017). 國人飲食中攝入金屬類污染物調查與檢驗分析,期中報告. 3 行政院農委會 (2014). 農藥田間試驗準則. 4 行政院農委會 (2018a). 什麼是農藥?. 5 行政院農委會 (2018b). 農藥管理法. 6 李國欽, 翁愫慎, 台灣省農業藥物毒物試驗所 (1993). 食用作物中農藥最高殘留容許量之訂定及應用. 7 Abdollahi, M., Donyavi, M., Pournourmohammadi, S., and Saadat, M. (2004). Hyperglycemia associated with increased hepatic glycogen phosphorylase and phosphoenolpyruvate carboxykinase in rats following subchronic exposure to malathion. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 137, 343-347. 8 Amori, R.E., Lau, J., and Pittas, A.G. (2007). Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. Jama 298, 194-206. 9 Asrih, M., and Jornayvaz, F.R. (2015). Metabolic syndrome and nonalcoholic fatty liver disease: is insulin resistance the link? Molecular and cellular endocrinology 418, 55-65. 10 Barraj, L., Petersen, B., Tomerlin, J., and Daniel, A. (2000). Background Document for the Sessions: Dietary Exposure Evaluation Model (DEEM) and DEEM Decompositing Procedure and Software. Presented by: Novigen Sciences, Inc Washington, DC and the United States Environmental Protection Agency (US EPA), Office of Pesticide Programs, Washington, DC Presented to: FIFRA Scientific Advisory Panel (SAP), Arlington, Virginia February 29–March 3. 11 Berclaz, G., Li, S., Price, K., Coates, A., Castiglione-Gertsch, M., Rudenstam, C.-M., Holmberg, S., Lindtner, J., Erien, D., and Collins, J. (2004). Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Annals of Oncology 15, 875-884. 12 Boon, P.E., Bonthuis, M., van der Voet, H., and van Klaveren, J.D. (2011). Comparison of different exposure assessment methods to estimate the long-term dietary exposure to dioxins and ochratoxin A. Food and chemical toxicology 49, 1979-1988. 13 Boon, P.E., te Biesebeek, J.D., Sioen, I., Huybrechts, I., De Neve, M., Amiano, P., Arganini, C., Azpiri, M., Busk, L., and Christensen, T. (2010). Long‐term dietary exposure to chromium in young children living in different European countries. EFSA Supporting Publications 7, 54E. 14 Bourez, S., Van den Daelen, C., Le Lay, S., Poupaert, J., Larondelle, Y., Thomé, J.-P., Schneider, Y.-J., Dugail, I., and Debier, C. (2013). The dynamics of accumulation of PCBs in cultured adipocytes vary with the cell lipid content and the lipophilicity of the congener. Toxicology letters 216, 40-46. 15 Cao, P., Huang, G., Yang, Q., Guo, J., and Su, Z. (2016). The effect of chitooligosaccharides on oleic acid-induced lipid accumulation in HepG2 cells. Saudi Pharmaceutical Journal 24, 292-298. 16 Chang, C.J., Wu, C.H., Chang, C.S., Yao, W.J., Yang, Y.C., Wu, J.S., and Lu, F.-H. (2003). Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs. International journal of obesity 27, 253. 17 Chen, L., Chen, R., Wang, H., and Liang, F. (2015). Mechanisms linking inflammation to insulin resistance. International journal of endocrinology 2015. 18 Chiang, C.F., Hsu, K.C., Ling, M.P. (2015). Computerized Taiwan dietary exposure evaluation model. Poster session presented at International Workshop on Total Diet Studies, Korean. 19 Corley, R., Landry, T., Calhoun, L., Dittenber, D., and Lomax, L. (1986). Chlorpyrifos: 13-week nose-only vapor inhalation exposure study in Fischer 344 rats. Dow Chemical Company Laboratory report Code HET K, 044793-044077. 20 Crown, S., Gur, E., Nyska, A., and Waner, T. (1985). Pyrinex technical toxicity in dietary administration to rats for 13 weeks. Ness Ziona, Israel: Life Science Research Israel, Inc. 21 De Roos, A., Zahm, S., Cantor, K., Weisenburger, D., Holmes, F., Burmeister, L., and Blair, A. (2003). Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occupational and Environmental Medicine 60, e11-e11. 22 Elsharkawy, E.E., Yahia, D., and El-Nisr, N.A. (2013). Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: attenuation by glutathione. Environmental toxicology and pharmacology 35, 218-227. 23 Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J., and Paquot, N. (2014). Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes research and clinical practice 105, 141-150. 24 Evans, C.C., LePard, K.J., Kwak, J.W., Stancukas, M.C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., and Leone, V. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one 9, e92193. 25 Fang, B., Li, J.W., Zhang, M., Ren, F.Z., and Pang, G.F. (2017). Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem Toxicol 111, 144-152. 26 FAO/WHO (2009). Environmental Health Criteria 240, Principles and Methods for the Risk Assessment of Chemicals in Food. 27 Food Standards Australia and New Zealand, F. (2013). FSANZ’s dietary exposure assessment computer program 28 Ford, E.S. (2005). Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the US. Diabetes care 28, 2745-2749. 29 Fraulob, J.C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M.B., and Mandarim-de-Lacerda, C.A. (2010). A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. Journal of clinical biochemistry and nutrition, 1004080019-1004080019. 30 Freire, C., and Koifman, S. (2012). Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology 33, 947-971. 31 George, J., and Shukla, Y. (2011). Pesticides and cancer: insights into toxicoproteomic-based findings. Journal of proteomics 74, 2713-2722. 32 Gur, E., Nyska, A., and Waner, T. (1991). Pyrinex technical oncogenicity study in the mouse. Life Science Research Israel Ltd, Project MAK/106/PYR, completed 6. 33 Hajiaghaalipour, F., Khalilpourfarshbafi, M., and Arya, A. (2015). Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci 11, 508-524. 34 Hwang, L.C., Bai, C.H., and Chen, C.J. (2006). Prevalence of obesity and metabolic syndrome in Taiwan. Journal of the Formosan Medical Association 105, 626-635. 35 Isomaa, B., Almgren, P., Tuomi, T., Forsén, B., Lahti, K., Nissén, M., Taskinen, M.-R., and Groop, L. (2001). Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes care 24, 683-689. 36 Jang, E., Shin, M.H., Kim, K.S., Kim, Y., Na, Y.C., Woo, H.J., Kim, Y., Lee, J.H., and Jang, H.J. (2014). Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC complementary and alternative medicine 14, 253. 37 Karami-Mohajeri, S., and Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30, 1119-1140. 38 Klaveren, J.D.v., Donkersgoed, G.v., Voet, H.v.d., Stephenson, C., and Boon, P.E. (2010). Cumulative Exposure Assessment of Triazole Pesticides. EFSA Supporting Publications 7, 40E. 39 Kondakala, S., Lee, J.H., Ross, M.K., and Howell, G.E., 3rd (2017). Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice. Toxicol Appl Pharmacol 337, 67-75. 40 Laaksonen, D.E., Lakka, H.-M., Niskanen, L.K., Kaplan, G.A., Salonen, J.T., and Lakka, T.A. (2002). Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. American journal of epidemiology 156, 1070-1077. 41 Lee, W.J., Hoppin, J.A., Blair, A., Lubin, J.H., Dosemeci, M., Sandler, D.P., and Alavanja, M.C. (2004). Cancer incidence among pesticide applicators exposed to alachlor in the Agricultural Health Study. American journal of epidemiology 159, 373-380. 42 Leto, D., and Saltiel, A.R. (2012). Regulation of glucose transport by insulin: traffic control of GLUT4. Nature reviews Molecular cell biology 13, 383. 43 Liang, Y., Zhan, J., Liu, D., Luo, M., Han, J., Liu, X., Liu, C., Cheng, Z., Zhou, Z., and Wang, P. (2019). Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 7, 19. 44 Lin, C.L., Huang, H.C., and Lin, J.K. (2007). Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of lipid research 48, 2334-2343. 45 Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation 117, 175-184. 46 McCollister, S., Kociba, R., Gehring, P., and Humiston, C. (1971). Results of two-year dietary feeding studies on Dowco 179 in rats. Midland MI, USA: Dow Chemical Co. 47 McDuffie, H.H., Pahwa, P., McLaughlin, J.R., Spinelli, J.J., Fincham, S., Dosman, J.A., Robson, D., Skinnider, L.F., and Choi, N.W. (2001). Non-Hodgkin’s lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiology and Prevention Biomarkers 10, 1155-1163. 48 Meggs, W.J., and Brewer, K.L. (2007). Weight gain associated with chronic exposure to chlorpyrifos in rats. Journal of Medical Toxicology 3, 89-93. 49 Miligi, L., Costantini, A.S., Veraldi, A., Benvenuti, A., WILL, and VINEIS, P. (2006). Cancer and pesticides: an overview and some results of the Italian multicenter case–control study on hematolymphopoietic malignancies. Annals of the New York Academy of Sciences 1076, 366-377. 50 Min, J.Y., Cho, J.S., Lee, K.J., Park, J.B., Park, S.G., Kim, J.Y., and Min, K.B. (2011). Potential role for organochlorine pesticides in the prevalence of peripheral arterial diseases in obese persons: results from the National Health and Nutrition Examination Survey 1999–2004. Atherosclerosis 218, 200-206. 51 Montgomery, M., Kamel, F., Saldana, T.M., Alavanja, M., and Sandler, D.P. (2008). Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003. American journal of epidemiology 167, 1235-1246. 52 Nauck, M. (2016). Incretin therapies: highlighting common features and differences in the modes of action of glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors. Diabetes, Obesity and Metabolism 18, 203-216. 53 O'neill, S., and O'driscoll, L. (2015). Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity reviews 16, 1-12. 54 Parekh, S., and Anania, F.A. (2007). Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 132, 2191-2207. 55 Park, S.K., Son, H.K., Lee, S.K., Kang, J.H., Chang, Y.S., Jacobs, D.R., and Lee, D.H. (2010). Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J Prev Med Public Health 43, 1-8. 56 Peris-Sampedro, F., Cabre, M., Basaure, P., Reverte, I., Domingo, J.L., and Teresa Colomina, M. (2015). Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environ Res 142, 169-176. 57 Rakitsky, V.N., Koblyakov, V.A., and Turusov, V.S. (2000). Nongenotoxic (epigenetic) carcinogens: pesticides as an example. A critical review. Teratogenesis, carcinogenesis, and mutagenesis 20, 229-240. 58 Ranasinghe, P., Mathangasinghe, Y., Jayawardena, R., Hills, A., and Misra, A. (2017). Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC public health 17, 101. 59 Reaven, G.M. (1988). Role of insulin resistance in human disease. Diabetes 37, 1595-1607. 60 Reaven, G.M. (2005). The metabolic syndrome: requiescat in pace. Clin Chem 51, 931-938. 61 Ricchi, M., Odoardi, M.R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., Fantoni, L.I., Marra, F., Bertolotti, M., Banni, S., et al. (2009). Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 24, 830-840. 62 Schapira, A., Cooper, J., Dexter, D., Clark, J., Jenner, P., and Marsden, C. (1990). Mitochondrial complex I deficiency in Parkinson's disease. Journal of neurochemistry 54, 823-827. 63 Slotkin, T.A., Brown, K.K., and Seidler, F.J. (2005). Developmental exposure of rats to chlorpyrifos elicits sex-selective hyperlipidemia and hyperinsulinemia in adulthood. Environmental health perspectives 113, 1291-1294. 64 Szabo, J., Young, J., and Granjean, M. (1988). Chlorpyrifos: 13-week dietary toxicity study in Fisher 344 rats. Jackson Research Centre, Health and Environmental Sciences-Texas Laboratory study No: TXT: K-044793-071 Report dated December 28, 1988. 65 Tanvir, E.M., Afroz, R., Chowdhury, M., Gan, S.H., Karim, N., Islam, M.N., and Khalil, M.I. (2016). A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol 35, 991-1004. 66 Tsai, C.L., Yu, Y.F., Chen, C.C., Chou, Y.S., Ni, S.P., Chang, C.C., and Chiang, C.F. (2016). Developments and applications of a computerized system for Taiwan diet exposure assessment model: demonstrated for organophosphate pesticides residues in food matrices. Taiwan Gong Gong Wei Sheng Za Zhi 35, 487. 67 Uchendu, C., Ambali, S.F., and Ayo, J.O. (2012). The organophosphate, chlorpyrifos, oxidative stress and the role of some antioxidants: a review. 68 van Klaveren, J.D., Goedhart, P.W., Wapperom, D., and van der Voet, H. (2012). A European tool for usual intake distribution estimation in relation to data collection by EFSA. EFSA Supporting Publications 9, 300E. 69 Van Maele-Fabry, G., Hoet, P., Vilain, F., and Lison, D. (2012). Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environment international 46, 30-43. 70 Zamzila, A., Aminu, I., Niza, S., Razman, M., and Hadi, M. (2011). Chronic organophosphate pesticide exposure and coronary artery disease: Finding a bridge. IIUM Research. Invention and Innovation exhibition (IRIIE). 71 Zang, Y., Fan, L., Chen, J., Huang, R., and Qin, H. (2018). Improvement of Lipid and Glucose Metabolism by Capsiate in Palmitic Acid-Treated HepG2 Cells via Activation of the AMPK/SIRT1 Signaling Pathway. J Agric Food Chem 66, 6772-6781. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73080 | - |
dc.description.abstract | 陶斯松(Chlorpyrifos, CPF)是一種廣效型的殺蟲劑,常施灑於穀類、水果、蔬菜等作物上,使用層面非常廣泛,因此經常殘留於蔬果中並被消費者攝入。雖根據過去的安全性評估以及現有的農藥管理可避免國人暴露過多CPF,但近年來的流行病學、動物實驗紛紛指出長期暴露CPF於不引發神經毒性的劑量下可能會影響動物的代謝,如肥胖、高血醣、胰島素阻抗等,然而文獻中所使用之劑量又遠高於實際暴露量,且以往的安全性評估皆由健康的動物進行實驗,我們認為這可能會忽略其潛藏的安全問題,因此我們藉由台灣膳食暴露評估模組(Taiwan Dietary Exposure Evaluation Model, TDEEM)串連台灣營養健康狀況變遷調查(Nutrition And Health Survey in Taiwan, NAHSIT)與總膳食調查計畫(Total Diet Survey, TDS)兩大資料庫估計出台灣民眾可能之CPF暴露量,分析國人中健康族群與代謝症候族群在目前的暴露狀態下是否對於各項血液生化數值造成影響,並以上述之估計暴露量管餵一般飲食(Normal diet, ND)與高脂飲食(High fat diet, HFD)誘導之代謝異常小鼠,觀察醣類與脂質的代謝狀況,再以細胞模式確認其結果。在數據分析中我們發現在老年族群中CPF暴露量與血清三酸甘油酯(Triglyceride, TG)呈現正相關 (r=0.1231, P<0.05),在動物實驗中也觀察到ND組中暴露中劑量(0.002 mg/kg-bw)與高劑量(0.6 mg/kg-bw)CPF會使血清TG分別上升約1.5倍與1.63倍,而高劑量(0.6 mg/kg-bw)也會造成肝臟中TG的上升1.27倍,在肝臟蛋白表現量則觀察到中劑量(0.002 mg/kg-bw)CPF 可使p-ACC/ACC下降0.65倍,但在肝細胞脂肪堆積模式中發現CPF並不會促進肝脂肪堆積,推測CPF可能不是直接作用於肝臟,而是藉由影響其他臟器再間接影響到肝臟脂質的代謝。綜合以上實驗結果,我們認為在安全暴露量下的CPF可能會影響人體脂質代謝。 | zh_TW |
dc.description.abstract | Chlorpyrifos (CPF) is a broad-spectrum insecticide, and usually used to cereals, fruits, and vegetables. Due to its wide usage, it is easily to be consumed from CPF residues in fruits or vegetables. Although the usage of pesticide has been verified by safety assessments and controlled by pesticide management, recent epidemiological and animal studies reported that CPF could affect human or animal metabolism under doses without neurotoxicity. However, the doses adopted in these studies are still too high when compared with the dose of CPF residues in foods. Besides, conclusions of safety assessments are based on the studies using healthy animals, raising the possibility of ignoring some hidden security issues. In this study, firstly, we used TDEEM to connect Nutrition and Health Survey in Taiwan (NAHSIT) and the Total Diet Study (TDS) data banks and deducted individual CPF exposure. We further analyzed the relationship between the individual CPF exposure and relevant biochemical values. Secondly, we investigated the effects of exposure dose deduced from our analysis on mice fed with either normal diet (ND) or high fat diet (HFD). Our results reveal that the Estimated Daily Intake (EDI) of CPF positively correlates (r=0.1231, P<0.05) with serum triglyceride (TG) in the elderly population. In animal model, we also observed that middle-dose (0.002 mg/kg-bw) and high-dose (0.6 mg/kg-bw) CPF increased 1.5-fold and 1.63-fold serum TG in ND group, respectively. High-dose CPF (0.6 mg/kg-bw) increased hepatic TG to 1.27 folds, while middle- dose (0.002 mg/kg-bw) CPF suppressed hepatic p-ACC/ACC ratio by 0.65 folds. From the results of hepatocyte model, we observed that CPF didn’t affect lipid accumulation, so we proposed that CPF might indirectly act through other tissues to affect liver. Taken together, we claim that the CPF may affect human lipid metabolism under legal exposure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:16:39Z (GMT). No. of bitstreams: 1 ntu-108-R05b22039-1.pdf: 3492038 bytes, checksum: 6b2f8cf3a5c602aa3ab58c5adc316095 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 縮寫表 IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章、 前言 1 第二章、 文獻回顧 2 第一節 農藥 2 1-1. 農藥與食品安全 2 1-2. 安全性評估 2 1-3. 長期暴露的影響 3 第二節 陶斯松(Chlorpyrifos, CPF) 6 2-1. 基本性質 6 2-2. 毒性與相關規定 6 2-3. 對代謝的影響 8 第三節 代謝症候群(Metabolism Syndrome, MetS) 9 3-1. 定義 9 3-2. 診斷標準 9 3-3. 盛行率 12 3-4. 代謝症候群對健康的影響 13 第四節 胰島素 14 4-1. 胰島素的分泌 14 4-2. 胰島素的功能 14 4-3. 胰島素阻抗(Insulin Resistance) 15 第五節 膳食暴露評估 17 4-1. 食品風險評估 17 4-2. 臺灣膳食暴露模組 18 第三章、 實驗架構 22 第一節 數據分析 22 第二節 動物實驗 23 第三節 細胞實驗 24 第四章、 材料與研究方法 25 第一節 實驗材料 25 1-1. 細胞培養 25 1-2. 實驗藥品 25 1-3. 實驗套組 26 1-4. 抗體 26 1-5. 實驗耗材 27 第二節 實驗儀器 27 第三節 實驗動物 28 3-1. 實驗動物與分組 28 3-2. 動物飼養與樣品採集 29 3-3. 樣品分析 30 第四節 細胞培養 31 第五節 肝臟蛋白萃取 32 第六節 蛋白質定量 32 第七節 細胞存活率測定(MTT assay) 32 第八節 油紅染色法(Oil red O assay) 33 第九節 十二烷基硫酸鈉聚丙烯醯胺膠體電泳分析(SDS-PAGE) 34 第十節 西方墨點法(Western blot) 36 第十一節 統計分析 38 第五章、 結果 39 第一節 比對NAHSIT和TDS資料庫分析CPF攝取量與人體代謝症候群各項指標之相關性 39 1-1. 個體於不同CPF EDI與得到代謝症候群的相關性 39 1-2. 攝食CPF的族群中EDI與代謝症候群五項指標之相關性 39 1-3. 不同年齡層的族群中血糖與EDI的相關性 40 第二節 動物實驗 40 2-1. CPF對於C57BL/6 小鼠體重與臟器重量的影響 40 2-2. CPF對於C57BL/6 小鼠血糖恆定的影響 41 2-3. CPF對於C57BL/6 小鼠TG合成的影響 42 第三節 CPF對於HepG2細胞脂肪堆積的影響 42 第六章、 討論 44 第一節 高脂飲食誘導模式 44 第二節 CPF對於一般飲食與高脂飲食誘導小鼠的影響 44 第三節 探討CPF對於HepG2脂質堆積之影響 45 第七章、 結論 47 第八章、 圖與表 48 第九章、 參考資料 78 | |
dc.language.iso | zh-TW | |
dc.title | 結合多種數據資料庫分析國人陶斯松暴露量對人體代謝的影響並利用小鼠模式進行評估 | zh_TW |
dc.title | Combining various databases to investigate the exposure and the metabolic effect of chlorpyrifos in Taiwanese and mice models | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝淑貞(Shu-Chen Hsieh) | |
dc.contributor.oralexamcommittee | 江舟峰(Chow-Feng Chiang),黃智興(Tze-Sing Huang),郭靜娟(Ching-Chuan Kuo) | |
dc.subject.keyword | 陶斯松,暴露量,安全,脂質代謝, | zh_TW |
dc.subject.keyword | Chlorpyrifos,exposure,safety,lipid metabolism, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201901438 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-12 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。