Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達
dc.contributor.authorTzu-Hsuan Changen
dc.contributor.author張子軒zh_TW
dc.date.accessioned2021-06-17T07:16:33Z-
dc.date.available2020-07-23
dc.date.copyright2019-07-23
dc.date.issued2019
dc.date.submitted2019-07-11
dc.identifier.citation[1] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, 1997.
[2] C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite hilbert space and entropy control,” Phys. Rev. Lett., vol. 84, pp. 5304–5307, Jun 2000.
[3] T. Chang, G.-D. Lin, and H. Jen, “Spectral shaping of the biphoton state from multiplexed thermal atomic ensembles,” arXiv preprint arXiv:1905.09482, 2019.
[4] A. Ac ́ın, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, and F. K. Wilhelm, “The quantum technologies roadmap: a european community view,” New Journal of Physics, no. 8, p. 080201, aug 2018.
[5] H. J. Kimble, “The quantum internet,” Nature, vol. 453, pp. 1023 EP –, 06 2008.
[6] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, no. 6862, pp. 413–418, 2001.
[7] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys., vol. 83, pp. 33–80, Mar 2011.
[8] T. Chanelie`re, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett., vol. 96, p. 093604, Mar 2006.
[9] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nature Physics, vol. 6, pp. 894 EP –, 09 2010.
[10] H. H. Jen and T. A. B. Kennedy, “Efficiency of light-frequency conversion in an atomic ensemble,” Phys. Rev. A, vol. 82, p. 023815, Aug 2010.
[11] J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: A magneto-optical trap for erbium atoms,” Phys. Rev. Lett., vol. 96, p. 143005, Apr 2006. [Online].
[12] M. Lu, S. H. Youn, and B. L. Lev, “Trapping ultracold dysprosium: A highly magnetic gas for dipolar physics,” Phys. Rev. Lett., vol. 104, p. 063001, Feb 2010.
[13] B. Lauritzen, J. c. v. Mina ́ˇr, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett., vol. 104, p. 080502, Feb 2010.
[14] T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long- distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett., vol. 120, p. 203601, May 2018.
[15] M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nature Communications, vol. 9, no. 1, p. 1998, 2018.
[16] V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrie ́, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadala`, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett., vol. 35, no. 9, pp. 1440–1442, May 2010.
[17] M. Davanc ̧o, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications- band heralded single photons from a silicon nanophotonic chip,” Applied Physics Letters, vol. 100, no. 26, p. 261104, 2012.
[18] A. Dre ́au, A. Tchebotareva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Applied, vol. 9, p. 064031, Jun 2018.
[19] Q. Li, M. Davanc ̧o, and K. Srinivasan, “Efficient and low-noise single- photon-level frequency conversion interfaces using silicon nanophotonics,” Nature Photonics, vol. 10, pp. 406 EP –, 04 2016.
[20] A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, p. 243601, Jun 2018.
[21] T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the international space station: a proposal,” vol. 15, no. 4, p. 043008, 2013.
[22] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science, vol. 356, no. 6343, pp. 1140–1144, 2017.
[23] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, p. 030501, Jan 2018.
[24] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969.
[25] A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via bell’s theorem,” Phys. Rev. Lett., vol. 47, pp. 460–463, Aug 1981.
[26] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett., vol. 75, pp. 4337–4341, Dec 1995.
[27] S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys., vol. 77, pp. 513–577, Jun 2005.
[28] A. Grodecka-Grad, E. Zeuthen, and A. S. Sørensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett., vol. 109, p. 133601, Sep 2012.
[29] C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett., vol. 92, p. 127903, Mar 2004.
[30] P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett., vol. 113, p. 160401, Oct 2014.
[31] H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett., vol. 85, pp. 286–289, Jul 2000.
[32] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature, vol. 412, no. 6844, pp. 313–316, 2001.
[33] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics, vol. 3, pp. 305 EP –, 05 2007.
[34] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of
generalized bell inequalities,” Nature Physics, vol. 7, pp. 677 EP –, 05 2011.
[35] M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A, vol. 84, p. 062101, Dec 2011.
[36] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science, vol. 338, no. 6107, pp. 640–643, 2012.
[37] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” Proceedings of the National Academy of Sciences,
vol. 113, no. 48, pp. 13 642–13 647, 2016.
[38] D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley,
“Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett., vol. 83, pp. 955–958, Aug 1999.
[39] S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A, vol. 61, p. 032305, Feb 2000.
[40] H. H. Jen, “Spectral analysis for cascade-emission-based quantum communication in atomic ensembles,” vol. 45, no. 16, p. 165504, 2012.
[41] H. H. Jen and Y.-C. Chen, “Spectral shaping of cascade emissions from multiplexed cold atomic ensembles,” Phys. Rev. A, vol. 93, p. 013811, Jan 2016.
[42] H. H. Jen, “Entropy of entanglement in the continuous frequency space of the biphoton state from multiplexed cold atomic ensembles,” vol. 49, no. 3, p. 035503, 2016.
[43] ——, “Cascaded cold atomic ensembles in a diamond configuration as a spectrally entangled multiphoton source,” Phys. Rev. A, vol. 95, p. 043840, Apr 2017.
[44] C. Li, Z. Jiang, Y. Zhang, Z. Zhang, F. Wen, H. Chen, Y. Zhang, and M. Xiao, “Controlled correlation and squeezing in pr3+ : y2sio5 to yield correlated
light beams,” Phys. Rev. Applied, vol. 7, p. 014023, Jan 2017.
[45] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett., vol. 120, p. 260502, Jun 2018.
[46] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett., vol. 98, p. 060502, Feb 2007.
[47] S.-Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express, vol. 17, no. 16, pp. 13 639–13 645, Aug 2009.
[48] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett., vol. 98, p. 190503, May 2007.
[49] C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency- entangled qudits,” Phys. Rev. A, vol. 88, p. 032322, Sep 2013.
[50] J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett., vol. 112, p. 133602, Apr 2014.
[51] J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica, vol. 4, no. 1, pp. 8–16, Jan 2017.
[52] M. Kues, C. Reimer, P. Roztocki, L. R. Corte ́s, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azan ̃a, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature, vol. 546, pp. 622 EP –, 06 2017.
[53] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A, vol. 79, p. 052329, May 2009.
[54] Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A, vol. 91, p. 031802, Mar 2015.
[55] J. Borregaard, M. Zugenmaier, J. M. Petersen, H. Shen, G. Vasilakis, K. Jensen, E. S. Polzik, and A. S. Sørensen, “Scalable photonic network architecture based on motional averaging in room temperature gas,” Nature Communications, vol. 7, pp. 11 356 EP –, 04 2016.
[56] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett., vol. 86, pp. 783–786, Jan
2001.
[57] M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Mu ̈ller, T. Fernholz, and E. S. Polzik, “High quality anti- relaxation coating material for alkali atom vapor cells,” Opt. Express, vol. 18, no. 6, pp. 5825–5830, Mar 2010.
[58] D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Y. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques,” Phys. Rev. A, vol. 69, p. 065802, Jun 2004.
[59] J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett., vol. 108, p. 173601, Apr 2012.
[60] R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev., vol. 93, pp. 99–110, Jan 1954.
[61] M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Physics Reports, vol. 93, no. 5, pp. 301 – 396, 1982.
[62] H. H. Jen, “Positive-p phase-space-method simulation of superradiant emission from a cascade atomic ensemble,” Phys. Rev. A, vol. 85, p. 013835, Jan 2012.
[63] N. E. Rehler and J. H. Eberly, “Superradiance,” Phys. Rev. A, vol. 3, pp. 1735–1751, May 1971.
[64] Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A, vol. 51, pp. R2703–R2706, Apr 1995.
[65] T. H. Chang, G.-D. Lin, and H. H. Jen, “Spectrally entangled biphoton state of cascade emissions from a doppler-broadened atomic ensemble,” vol. 52, no. 13, p. 135501, 2019.
[66] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A, vol. 82, p. 053842, Nov 2010.
[67] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder- type atomic configuration: theory and experiment,” Optics Express, vol. 20, no. 10, pp. 11 433–11 444, 2012.
[68] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., vol. 74, pp. 145–195, Mar 2002.
[69] L. Dusanowski, S.-H. Kwon, C. Schneider, and S. Ho ̈fling, “Near-unity indistinguishability single photon source for large-scale integrated quantum optics,” Phys. Rev. Lett., vol. 122, p. 173602, May 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73078-
dc.description.abstract本篇論文針對熱原子團激發之雙光子態的頻譜糾纏性質進行理論研究。雙光子來自於受兩道脈衝激發之熱原子團的級聯發射。在四波混頻的情況下,可以分別從較高能階轉換以及較低能階轉換產生信號光子和游離光子。藉由施密特分解,我們從較低能階轉換的超幅射衰退率、激發脈衝期和環境溫度等三個參數研究雙光 子頻譜的糾纏性質。透過頻移的多路複用,發現在正相關與反相關的頻移多路複用中,增加原子團數量可以產生具有更高糾纏性質的雙光子態。此外,在頻移多路複 用中,施密特基底下的特徵值有簡併的現象,對應的施密特值甚至可以高於多路複用的熱原子團數目,說明在連續的頻率基底中具有更高的糾纏性質與更多互相關聯的特徵模式。最後,我們研究從多路複用的熱原子團中可得到的最低糾纏雙光子態。zh_TW
dc.description.abstractWe theoretically investigate the spectral property of a biphoton state from multi- plexed thermal atomic ensembles. This biphoton state originates from the cascade emissions, which can be generated by two weak pump fields under four-wave mixing condition. Under this condition, a signal photon from the upper transition, chosen in a telecommunication bandwidth, can be generated along with a correlated idler photon from the lower infrared transition. We obtain the spectral property under different superradiant decay rates of the lower transition, excitation pulse du- rations, and temperature of the medium. We can spectrally shape the biphoton state by multiplexing the atomic ensembles with frequency-shifted emissions, where the entropy of entanglement can be analyzed via Schmidt decompositions. We find that this spectral entanglement increases when more vapor cells are multiplexed with correlated or anti-correlated signal and idler fields. The eigenvalues in Schmidt bases approach degenerate under this multiplexing scheme, and corresponding Schmidt numbers can be larger than the number of the multiplexed vapor cells, showing the enlarged entropy of entanglement and excess correlated modes in con- tinuous frequency spaces. We also investigate the lowest entropy of entanglement allowed in the multiplexing scheme, which is preferential for generating a pure single photon source. This shows the potentiality to spectrally shape the bipho- ton source, where high-capacity spectral modes can be applied in long-distance quantum communication and multimode quantum information processing.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:16:33Z (GMT). No. of bitstreams: 1
ntu-108-R06222050-1.pdf: 4845581 bytes, checksum: 86645fd99d7443bf3411126f634a3698 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAbstract, page i
List of Figures, page v
1 Introduction, page 1
1.1 Spontaneous decay[1], page 3
1.2 Entanglement, page 5
1.3 Schmidt decomposition[2], page 6
2 Theoretical model, page 9
2.1 Spectral function of the biphoton state from cold atoms, page 9
2.2 Spectral function of the biphoton state from thermal atoms, page 11
3 Cascade emissions from a Doppler-broadened atomic ensemble, page 13
3.1 Co-propagating scheme, page 13
3.2 Counter-propagating scheme, page 18
4 Spectral shaping [3], page 19
4.1 The multiplexing scheme of biphoton state, page 19
4.1.1 Multiplexed two thermal atomic ensembles, page 22
4.1.2 Multiplexed multiple thermal atomic ensembles, page 23
4.2 Spectral shaping, page 24
5 Conclusion, page 29
Reference, page 31
dc.language.isozh-TW
dc.subject雙光子zh_TW
dc.subject多路複用zh_TW
dc.subject熱原子團zh_TW
dc.subject糾纏zh_TW
dc.subjectbiphotonen
dc.subjectentanglementen
dc.subjectthermal atomic ensembleen
dc.subjectcascade emissionen
dc.subjectmultiplexingen
dc.title熱原子團激發之雙光子態zh_TW
dc.titleSpectrally entangled biphoton state of cascade emissions from Doppler-broadened atomic ensemblesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor任祥華
dc.contributor.oralexamcommittee陳應誠
dc.subject.keyword雙光子,糾纏,熱原子團,多路複用,zh_TW
dc.subject.keywordbiphoton,entanglement,thermal atomic ensemble,cascade emission,multiplexing,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201901418
dc.rights.note有償授權
dc.date.accepted2019-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved