請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73071
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇志杰(Chih-Chieh Su) | |
dc.contributor.author | Yun-Ze Cheng | en |
dc.contributor.author | 鄭雲澤 | zh_TW |
dc.date.accessioned | 2021-06-17T07:16:15Z | - |
dc.date.available | 2021-01-20 | |
dc.date.copyright | 2021-01-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-01-11 | |
dc.identifier.citation | Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin-Seismological Society of America, 81(6), 2504–2510. Barckhausen, U., Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited (Vol. 149, pp. 121–125). AGU Washington, DC. https://doi.org/10.1029/149GM07 Barckhausen, U., Engels, M., Franke, D., Ladage, S., Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611. https://doi.org/10.1016/j.marpetgeo.2014.02.022 Beltrando, M., Manatschal, G., Mohn, G., Piaz, G. V. D., Brovarone, A. V., Masini, E. (2014). Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Science Reviews, 131, 88–115. https://doi.org/10.1016/j.earscirev.2014.01.001 Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x Briais, A., Patriat, P., Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328. https://doi.org/10.1029/92jb02280 Chang, J.-H., Hsieh, H.-H., Mirza, A., Chang, S.-P., Hsu, H.-H., Liu, C.-S., et al. (2017). Crustal structure north of the Taiping Island (Itu Aba Island), southern margin of the South China Sea. Journal of Asian Earth Sciences, 142, 119–133. https://doi.org/10.1016/j.jseaes.2016.08.005 Crotwell, H. P., Owens, T. J., Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154 Darwin, C., Jackson, C. (1842). The Structure and Distribution of Coral Reefs: Being the First Part of the Geology of the Voyage of the “Beagle,” under the Command of Capt. Fitzroy, R. N., during the Years 1832 to 1836. Journal of the Royal Geographical Society of London, 12, 115. https://doi.org/10.2307/1797986 Duennebier, F. K., Sutton, G. H. (2007). Why bury ocean bottom seismometers? Geochemistry, Geophysics, Geosystems, 8(2), n/a-n/a. https://doi.org/10.1029/2006gc001428 Ermert, L., Villaseñor, A., Fichtner, A. (2015). Cross-correlation imaging of ambient noise sources. Geophysical Journal International, 204(1), 347–364. https://doi.org/10.1093/gji/ggv460 Fan, C., Xia, S., Cao, J., Zhao, F., Sun, J., Wan, K., Xu, H. (2019). Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data. Marine Geology, 410, 70–87. https://doi.org/10.1016/j.margeo.2018.12.007 Fowler, S. R., White, R. S., Spence, G. D., Westbrook, G. K. (1989). The Hatton Bank continental margin-II. Deep structure from two-ship expanding spread seismic profiles. Geophysical Journal International, 96(2), 295–309. https://doi.org/10.1111/j.1365-246x.1989.tb04452.x Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003 Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., Jia, L. (2015). The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654, 1–19. https://doi.org/10.1016/j.tecto.2015.03.003 Gao, J., Peng, X., Wu, S., Lüdmann, T., McIntosh, K., Ma, B., Xu, Z. (2018). Different expressions of the crustal structure across the Dong-Sha Rise along the northeastern margin of the South China Sea. Journal of Asian Earth Sciences, 171(Marine Geophysical Research 32 2011), 187–200. https://doi.org/10.1016/j.jseaes.2018.01.034 Goldstein, P., A. Snoke, (2005), “SAC Availability for the IRIS Community”, Incorporated Institutions for Seismology Data Management Center Electronic Newsletter. Goldstein, P., D. Dodge, M. Firpo, Lee Minner (2003) “SAC2000: Signal processing and analysis tools for seismologists and engineers, Invited contribution to “The IASPEI International Handbook of Earthquake and Engineering Seismology”, Edited by WHK Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger, Academic Press, London. Holbrook, W. S., Larsen, H. C., Korenaga, J., Dahl-Jensen, T., Reid, I. D., Kelemen, P. B., et al. (2001). Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth and Planetary Science Letters, 190(3–4), 251–266. https://doi.org/10.1016/s0012-821x(01)00392-2 Huang, H., Qiu, X., Zhang, J., Hao, T. (2019). Low-velocity layers in the northwestern margin of the South China Sea: Evidence from receiver functions of ocean-bottom seismometer data. Journal of Asian Earth Sciences, 186, 104090. https://doi.org/10.1016/j.jseaes.2019.104090 Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW Kennett, B. L. N. (1991). New seismic travel time tables developed. Eos, Transactions American Geophysical Union, 72(19), 216–216. https://doi.org/10.1029/eo072i019p00216-03 Koper, K. D., Hawley, V. L. (2010). Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States. Earthquake Science, 23(5), 439–447. https://doi.org/10.1007/s11589-010-0743-5 Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003 Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749–4762. https://doi.org/10.1029/jb084ib09p04749 Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., et al. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10), 782–789. https://doi.org/10.1038/s41561-018-0198-1 Lester, R., Avendonk, H. J. A. V., McIntosh, K., Lavier, L., Liu, C.-S., Wang, T. K., Wu, F. (2014). Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging: Rifting and Magmatism in the SCS. Journal of Geophysical Research: Solid Earth, 119(3), 2305–2323. https://doi.org/10.1002/2013jb010639 Li, C.-F., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., et al. (2015). Proceedings of the International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.349.101.2015 Li, X., Jackson, C. R., Pichel, W. G. (2013). Internal solitary wave refraction at Dong-Sha Atoll, South China Sea. Geophysical Research Letters, 40(12), 3128–3132. https://doi.org/10.1002/grl.50614 Ligorria, J. P., Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400. Lin, A. T., Watts, A. B., Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453–478. https://doi.org/10.1046/j.1365-2117.2003.00215.x Lobkis, O. I., Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 3011–3017. https://doi.org/10.1121/1.1417528 Lüdmann, T., Wong, H. K. (1999). 1999_Ludmann_Dong-Sha-event.pdf. Tectonophysics, 311(1–4), 113–138. https://doi.org/10.1016/s0040-1951(99)00155-9 Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Bochu, Y., Zeng, W., Chen, Y. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11), 22407–22433. https://doi.org/10.1029/95jb01866 Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213 Shapiro, N. M., Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), n/a-n/a. https://doi.org/10.1029/2004gl019491 Sibuet, J.-C., Yeh, Y.-C., Lee, C.-S. (2016). Geodynamics of the South China Sea. Tectonophysics, 692, 98–119. https://doi.org/10.1016/j.tecto.2016.02.022 Smith, W. H. F., Sandwell, D. T. (1997). Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277(5334), 1956–1962. https://doi.org/10.1126/science.277.5334.1956 Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4), 046610. https://doi.org/10.1103/physreve.69.046610 Sun, W. (2016). Initiation and evolution of the South China Sea: an overview. Acta Geochimica, 35(3), 215–225. https://doi.org/10.1007/s11631-016-0110-x Survey, U. S. G., Peterson, J. R. (1993). Observations and modeling of seismic background noise (USGS Publications Warehouse). Retrieved from http://pubs.er.usgs.gov/publication/ofr93322 Tapponnier, P., Peltzer, G., Dain, A. Y. L., Armijo, R., Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2 Thybo, H., Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032 Tian, Y., Ritzwoller, M. H. (2015). Directionality of ambient noise on the Juan de Fuca plate: implications for source locations of the primary and secondary microseisms. Geophysical Journal International, 201(1), 429–443. https://doi.org/10.1093/gji/ggv024 Wang, C.-C., Chen, P.-C., Kuo, B.-Y., Lin, C.-R. (2012). Development of a geophone-based ocean bottom seismometer in Taiwan. 2012 Oceans - Yeosu, 1, 1–7. https://doi.org/10.1109/oceans-yeosu.2012.6263635 Wapenaar, K. (2004). Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 93(25), 254301. https://doi.org/10.1103/physrevlett.93.254301 Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013eo450001 Wie, X.-D., Ruan, A.-G., Zhao, M.-H., Qiu, X.-L., Li, J.-B., Zhu, J.-J., et al. (2011). A Wide‐Angle Obs Profile Across the Dong-Sha Uplift and Chaoshan Depression in the Mid‐Northern South China Sea. Chinese Journal of Geophysics, 54(6), 1149–1160. https://doi.org/10.1002/cjg2.1691 Wu, J., Suppe, J. (2018). Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6), 1304–1318. https://doi.org/10.1007/s12583-017-0813-x Xia, S., Zhao, F., Zhao, D., Fan, C., Wu, S., Mi, L., et al. (2018). Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: New insights from integrated seismology. Tectonophysics, 744, 227–238. https://doi.org/10.1016/j.tecto.2018.07.002 Yeh, Y.-C., Hsu, S.-K., Doo, W.-B., Sibuet, J.-C., Liu, C.-S., Lee, C.-S. (2012). Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations. Marine Geophysical Research, 33(4), 307–326. https://doi.org/10.1007/s11001-012-9154-4 Zhao, F., Alves, T. M., Xia, S., Li, W., Wang, L., Mi, L., et al. (2019). Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures. Earth and Planetary Science Letters, 530, 115862. https://doi.org/10.1016/j.epsl.2019.115862 Zhao, M., Qiu, X., Xia, S., Xu, H., Wang, P., Wang, T. K., et al. (2010). Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 480(1–4), 183–197. https://doi.org/10.1016/j.tecto.2009.10.004 Zhu, L., Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969–2980. https://doi.org/10.1029/1999jb900322 林佩瑩,2017,東沙環礁構造研究。海洋國家公園管理處,臺灣高雄 宮守業、王士偉,2013,東沙環礁全新是地質演化研究。海洋國家公園管理處,高雄 許樹坤、葉一慶,2012,東沙環礁地層震測與資料分析。海洋國家公園管理處,高雄 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73071 | - |
dc.description.abstract | 東沙環礁座落於南海北緣陸棚上,為一直徑約25 公里的巨大圓形礁體。由於環礁內水深較淺(~22 公尺)且孕育多樣珍稀生物,故不利進行主動源海上震測,使東沙環礁的地體構造始終是個未解之謎。本研究為解析其地體構造,自2017年3月至9月建立一直徑約15 公里的地震儀陣列,包括埋於潟湖內海床的四顆海底地震儀及一座中研院架設的島上寬頻地震永久站,為因應測站少、陣列直徑小的限制,我們使用遠震P波接收函數法解析環礁下地殼速度不連續面深度及速度。模型正推結果顯示下部地殼的P波速度為每秒6.9 ± 0.1 公里、厚度16 ± 1 公里,綜觀前人研究,在南海北緣的下部地殼普遍存在高速層且厚度大於10 公里,分佈多鄰近東沙環礁,證實埋於潟湖內海底地震儀資料所提供資訊可用以解析環礁下的一維地殼構造。且推測此高速下部地殼可能為岩石圈拉張導致荷重減輕誘發岩漿厚底作用的結果,如北大西洋鄰近Hatton Bank的被動大陸邊緣。然而雖有岩漿侵入證據卻未發現較厚的海洋地殼(> 15 公里)及向海傾斜反射層等被動大陸邊緣富含岩漿的指標形貌,符合IODP團隊2018年的探查結果,指出南海被動大陸邊緣不同於典型富含岩漿或岩漿匱乏的型態。此外,本文從兩兩測站的連續資料(共101天)計算交互相關函數,利用震幅在正負時窗的不對稱性,解析其噪訊源。結果顯示主要來源為環礁西側的兩個主要交換水道,次要噪源在春季呈東北向,但夏季轉西南向,可能與季風、內波折射或與更加複雜的交互作用相關連。 | zh_TW |
dc.description.abstract | Dong-Sha Atoll is situated at the continental shelf of the northern margin of the South China Sea (SCS), with about 25 km in diameter. The lagoon's deepest water depth is ~22 m; therefore, it is too shallow to do active seismic imaging. Due to the limited observations for the crustal structure below, the tectonics of Dong-Sha Atoll is still poorly understood. This study utilized the seismic data recorded in 4 ocean-bottom seismographs (OBSs) buried beneath the Dong-Sha lagoon and one BATS- station on the Dong-Sha Island to image the crustal structure. With this new seismic array ~15 km in aperture, for the first time, we can provide local constraints on the velocity model beneath Dong-Sha Atoll and estimate the directionality of the ambient seismic sources in the study region. Previous studies have shown the existence of a high-velocity layer in the lower crust beneath the continental shelf-slop of the northern SCS margin, interpreted as the igneous intrusion. Here, we mapped the crustal seismic discontinuity and estimated its depth beneath the Dong-Sha region by retrieving teleseismic receiver functions (RFs) from the seismic array. By comparing observed and synthetic RFs, the forward modeling results revealed a thick and high-velocity layer from the depth of 8 km to Moho (26±2 km) with a P-wave velocity of 6.9±0.1 km/s beneath Dong-Sha Atoll, which may be related to the magmatic underplating. In addition, we analyzed 101 days-long continuous data to investigate ambient seismic sources. The spatiotemporal variations mapped from the amplitude asymmetry of CCFs indicate the noise excitation mostly from the west and some from the north-east (NE). The main water exchanging channels between the lagoon and ocean water is located at the west, which excites microseism signals. Noise excitations from NE might be due to the northeast monsoon or internal wave refraction. This data set shows convincingly that the burial of seismic sensors in soft sediment can increase data fidelity to resolve the crustal structure beneath the shallow lagoon. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:16:15Z (GMT). No. of bitstreams: 1 U0001-2512202009144900.pdf: 62330177 bytes, checksum: ecf4836275912421cb73ea57f0421b72 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 中文摘要 V Abstract VI Content VIII List of Figures: X Chapter 1. Introduction 1 1.1 Evolution of the South China Sea Basin 1 1.2 Magmatic observations of the South China Sea (SCS) 2 1.3 Magmatic observations around the Dong-Sha atoll 4 1.4 Motivation and Objectives 5 1.5 Thesis roadmap 6 Chapter 2 Data 24 2.1 The buried OBS 24 2.2 The data quality of buried OBSs 24 2.3 Determining OBS Instrument Orientations 25 Chapter 3 Receiver Function (RF) 36 3.1 Method 36 3.1.1 Definition of RF 36 3.1.2 Forward modeling 39 3.2 Data processing (obtained the RF) 39 3.3 Results 41 3.3.1 Forward modeling 41 3.3.2 The map view of thickness of HLVC 42 Chapter 4 Cross-Correlation Function (CCF) 58 4.1 Method 58 4.1.1 Definition of CCF 58 4.1.2 Noise source tracking: Amplitude asymmetry 59 4.2 Data Processing (Obtained the CCF) 59 4.3 Results 61 4.3.1 Directionality of the noise sources 61 4.3.2 Spatiotemporal variations of noise sources 61 Chapter 5. Discussion 73 5.1. Magmatism related to the High-velocity Lower Crust (HVLC) 73 5.2. Two methods to ensure the noise source directions 74 5.3. Possible mechanisms of the noise excitations 75 Chapter 6 Conclusion 83 References: 85 | |
dc.language.iso | en | |
dc.title | 以東沙潟湖海底地震儀研究地殼速度不連續面與周遭噪訊源 | zh_TW |
dc.title | Crustal Discontinuity and Ambient Noise Sources beneath Dong-Sha Atoll from Buried Ocean-Bottom Seismographs | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林佩瑩(Pei-Ying Lin) | |
dc.contributor.oralexamcommittee | 洪淑蕙(Shu-Huei Hung),曾泰琳(Tai-Lin Tseng) | |
dc.subject.keyword | 東沙環礁,海底地震儀,接收函數,相關函數,厚底作用, | zh_TW |
dc.subject.keyword | Dong-Sha Atoll,ocean-bottom seismograph,receiver function,correlation function,underplating, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU202004461 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-01-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2512202009144900.pdf 目前未授權公開取用 | 60.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。