請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73039完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Hsin-Yu Hou | en |
| dc.contributor.author | 侯昕妤 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:14:56Z | - |
| dc.date.available | 2020-07-17 | |
| dc.date.copyright | 2019-07-17 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-15 | |
| dc.identifier.citation | [1] Lladosa, E.M.; J.B. Montón; M.C. Burguet; R. Munoz, “Phase equilibria involved in extractive distillation of dipropyl ether + 1-propyl alcohol using 2-ethoxyethanol as entrainer.” Fluid Phase Equilibria, vol. 255, 2007, pp. 62-69.
[2] Momoh, S.O., “Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation processes.” Separation Science and Technology, vol. 25, 1991, pp. 729-742. [3] Widagdo, S.; W.D. Seider, “Journal review: Azeotropic distillation.” AIChe Journal, vol. 42, 1996, pp. 96-130. [4] Luyben, W.L.; Chien, I.-L, Design and control of distillation systems for separating azeotropes. John Wiley & Sons, 2011. [5] Arifin, S.; Chien, I.-L., “Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer.” Industrial & Engineering Chemistry Research, vol. 47, 2008, pp. 790-803. [6] Lee, F.M.; R.E. Brown, “Extractive distillation of hydrocarbon mixture employing mixed solvent.” United States patent, US 4,948,472, 1990. [7] Raeva V. M.; A. Yu. Sazonova; A. K. Frolkova. “Synergistic Effect of Binary Separating Agents in Extractive Rectification of Homogeneous Mixtures.” Theoretical Foundations of Chemical Engineering, vol. 47, no. 5, 2013, pp. 649-659. [8] Jaime J.A.; G. Rodríguez; I.D. Gil. “Control of an Optimal Extractive Distillation Process with Mixed-Solvents as Separating Agent.” Industrial & Engineering Chemical Research, vol. 57, 2018, pp. 9615-9626. [9] Gil I.D.; A.M. Uyazάn; J.L. Agular; G. Rodríguez; L.A. Caicedo. “Separation of Ethanol and Water by Extractive Distillation with Salt and Solvent as Entrainer: Process Simulation.” Brazilian Journal of Chemical Engineering, vol. 25, no. 1, 2008, pp. 207-215. [10] Chengna D.; Z. Lei; X. Xi; J. Zhu; B. Chen. “Extractive Distillation with a Mixture of Organic Solvent and Ionic Liquid as Entrainer.” Industrial & Engineering Research, vol. 53, 2014, pp. 15786-15791. [11] Lei Z.; X. Xi; C. Dai; J. Zhou; B. Chen. “Extractive Distillation with the Mixture of Ionic Liquid and Solid Inorganic Salt as Entrainers.” AIChE Journal, vol. 60, 2014, pp. 2994-3004. [12] Sazonova, A.Y.; V.M. Raeva; A.K. Frolkova. “Design of Extractive Distillation Process with Mixed Entrainer: Influence of Multiple Inputs.” Chemical Papers, vol. 70, no. 5, 2016, pp. 594-601. [13] Zhao, Y.; T. Zhao; H. Jia; X. Li; Z. Zhu; Y. Wang, “Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope.” Journal of Chemical Technology and. Biotechnology., vol. 92, 2017, pp. 2433-2444. [14] Gil, I.D.; L.C. García; G. Rodríguez, “Simulation of Ethanol Extractive Distillation with Mixed Glycols as Separating Agent.” Brazilian Journal of Chemical Engineering, vol. 31, no. 1, 2014, pp. 259-270. [15] Doherty, M.F.; G.A. Caldarola, “Design and Synthesis of Homogeneous Azeotropic Distillations: The Sequencing of Columns for Azeotropic and Extractive Distillations.” Industrial & Engineering Chemistry Fundamentals, vol. 24, 1985, pp. 474-485. [16] Nishida, N.; G. Stephanopoulous; A.W. Westerberg, “A Review of Process Synthesis.” AIChE Journal, vol. 27, 1981, pp. 321-351. [17] Knight, J.R.; M.F. Doherty, “Optimal Design and Synthesis of Homogeneous Azeotropic Distillation Sequence.” Industrial & Engineering Chemistry Research, vol. 28, 1989, pp. 564-572. [18] Kossack, S.; K. Kraemer; R. Gani; W. Marquardt, “A Systematic Synthesis Framework for Extractive Distillation Processes.” Chemical Engineering Research and Design, vol. 86, 2008, pp. 781-792. [19] Chan, L.M.; R. Srinivasan, “A Hybrid CPU-Graphics Processing Unit (GPU) Approach for Computationally Efficient Simulation-Optimization.” Computer & Chemical Engineering, vol. 87, 2016, pp. 49-62. [20] Fu, M.C.; F.W. Glover, “Simulation-Optimization: A Review, New Developments, and Application.” Winter Simulation Conference Proceedings, 2005, pp. 83-95. [21] Carson, Y.; A. Maria, “Simulation Optimization: Methods and Applications.” Winter Simulation Conference Proceedings, 1997, pp. 118-126. [22] Tekin, E.; I. Sabuncuoglu, “Simulation Optimization: A Comprehensive Review on Theory and Applicaitions.” IIE Transactions, vol. 36, 2004, pp. 1067-1081. [23] Leboreiro, J.; J. Acevedo, “Process Synthesis and Design of Distillation Sequences Using Modular Simulators: A Genetic Algorithm Framework.” Computers & Chemical Engineering, vol. 28, 2004, pp. 1223-1236. [24] Wang, Y.; G. Bu; T. Wang; T. Zhao; Z. Zhang; Z. Zhu, “Application of A Simulated Annealing Algorithm to Design and Optimize a Pressure-Swing Distillation Process.” Computer & Chemical Engineering, vol. 95, 2016, pp. 91-107. [25] Gómez-Castro F.I.; J.G. Segovia-Hernández; S. Hernández; C. Gutiérrez-Antonio; A. Briones-Ramírez, “Dividing Wall Distillation Columns: Optimization and Control Properties.” Chemical Engineering & Technology, vol. 31, 2008, pp. 1246-1260. [26] Schoen, M.P., “Book Review.” International Journal of Robust Nonlinear Control, vol. 15, 2005, pp. 287-289. [27] Kirkpatrick, S.; C.D. Gelatt; M.P. Vecchi, “Optimization by Simulated Annealing.” Science, vol. 220, 1983, pp. 671 – 680. [28] Martins, F.; A.V. Carlos, “Cost, Economic, Environmental and Mixed Objective Function in Non-linear Process Optimization Using Simulated Annealing and Tabu Search.” Computer & Chemical Engineering, vol. 34, 2010, pp. 306-317. [29] Chaudhuri, P.D.; U.M. Diwekar, “Process Synthesis under Uncertainty: A Penalty Function Approach.” AIChE Journal, vol. 42, 1996, pp.742-752. [30] Floquet, P.; L. Pibouleau; S. Domenech, “Separation Sequence Synthesis: How to Use Simulated Annealing Procedure?” Computer & Chemical Engineering, vol. 18, 1994, pp. 1141-1148. [31] An, W.-Z.; X.-G. Yuan, “Simulated Annealing-Based Approach to the Optimal Synthesis of Heat-Integrated Distillation Sequences.” Computers & Chemical Engineering, vol. 33, 2009, pp. 199-212. [32] Wang, F.; Y. Luo; X. Yuan, “A Formulation Methodology for Multicomponent Distillation Sequences Based on Stochastic Optimization.” Chinese Journal of Chemical Engineering, vol. 24, 2016, pp. 1229-1235. [33] Dolan, W.B.; P.T. Cummings; M.D. Levan, “Process Optimization Via Simulated-Application to Network Design.” AIChE journal, vol. 35, 1989, pp. 725-736. [34] Haupt, R.L.; S.E. Haupt, Practical Genetic Algorithms. Wiley: New York, U.S.A., 1989. [35] Boozarjomehry, R.B.; A. Pourahmadi Laleh; W.Y. Svrcek, “Evolutionary Design of Optimum Distillation Column Sequence.” The Canadian Journal of Chemical Engineering, vol. 90, 2012, pp. 956-972. [36] Linke, P.; A. Kokossis, “On the Robust Application of Stochastic Optimization Technology for the Synthesis of Reaction/Separation Systems.” Computer & Chemical Engineering, vol. 27, 2003, pp. 733-758. [37] Glover, F., “Future paths for integer programming and links to artificial intelligence.” Computers and Operations Research, vol. 13, 1986, pp. 533-549. [38] Yang, X.L.; J.D. Ward. “Extractive Distillation Optimization Using Simulated Annealing and a Process Simulation Automation Server.” Industrial & Engineering. Chemistry Research, vol. 57, no. 32, 2018, pp. 11050-11060. [39] Aspen Plus User Guide Version 10.2. [40] Aarts, E.H.L.; P.J.M. Vanlaarhoven, “Statistical Cooling a General Approach to Combinational Optimization Problems.” Philips Journal of Research, vol. 40, 1985. [41] Patel, A.N.; R.S. Mah; I.A. Karimi, “Preliminary Design of Multiproduct Noncontinuous Plants Using Simulated Annealing.” Computer & Chemical Engineering, vol. 15, 1991. [42] Painton, L.A.; U.M. Diwekar, “Synthesizing Optimal-Design Configurations for a Brayton Cycle Power-Plant.” Computer & Chemical Engineering, vol. 8, 1994 [43] Cheng, J.-K.; H.-Y. Lee; H.-P. Huang; C.-C. Yu, “Optimal steady-state design of reactive distillation processes using simulated annealing.” Journal of the Taiwan Institute of Chemical Engineering, vol. 40, 2009, pp. 188 – 196. [44] Klein, R.W.; R.C. Dubes, “Experiments in Projection and Clustering by Simulated Annealing,” Pattern Recognition, vol. 22, no. 2, 1989, pp. 213 – 220. [45] Luyben, W.L., “Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone/Chloroform Separation.” Computer & Chemical Engineering, vol. 50, 2013, pp. 1-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73039 | - |
| dc.description.abstract | 本文利用模擬最適化來得出近似最適化用來分離共沸物的萃取蒸餾塔設計。隨著欲分離的共沸物和使用的共沸劑(Entrainer)複雜程度增加,藉由在MATLAB客戶端使用模擬退火演算法(SAA),並在Aspen Plus伺服端建立簡化的蒸餾塔流程圖,可以解決最適化問題。在分離系統中的每個蒸餾塔都能進行最適化,而其總年度成本再被加總計算。本篇用兩個二組成共沸物和一個三組成共沸物分離系統來演示萃取蒸餾塔使用包含單一共沸劑和多種成份混合共沸劑的模擬最適化的結果,並討論幾種簡化流程圖的方法以確保模擬的穩定度和適當的功能運行。結果顯示在萃取蒸餾塔進行複雜的共沸物分離時且包含眾多從六到十二個設計變數的模擬下,此最適化方法是可行的。 | zh_TW |
| dc.description.abstract | Simulation-optimization was applied to determine near-optimal process designs in extractive distillation systems for the separation of an azeotropic mixture. As either the azeotropic mixture or the entrainer involved in the separation process became more complicated, simulated annealing algorithm (SAA) programed in the client (MATLAB) was coupled with a simplified flowsheet built in the server (Aspen Plus) to solve the optimization problems. Each column in the separation process was optimized and the total cost of the whole process was calculated. Two extractive distillation processes using single and mixed entrainers and one extractive distillation system for separating a ternary azeotrope were proposed. Various shortcuts for building a simplified flowsheet to assure the stability and proper function of the simulator were also discussed. The optimization results obtained by SAA-based optimization demonstrated that this method can be well applied for solving the optimization problem dealing with a complicated extractive distillation with design variables ranging from six to twelve. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:14:56Z (GMT). No. of bitstreams: 1 ntu-108-R04524092-1.pdf: 3616638 bytes, checksum: b58f3d2ec0236167f79d6cdab6d867d2 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables x 1. Introduction 1 1.1. Overview 1 1.2. Literature Survey 2 1.3. Motivation 8 1.4. Thesis Organization 10 2. Method 11 2.1. Torn streams 11 2.2. Vapor liquid equilibrium curve 14 2.3. Aspen plus ActiveX automation server 16 2.4. Searching control paths in Aspen Plus 18 2.5. Simulated annealing algorithm (SAA) 19 2.5.1. Overview 19 2.5.2. Parameters of Simulated Annealing Algorithm 24 3. Application 29 3.1. Acetone/ methanol case study 29 3.1.1. Overview 29 3.1.2. Single-component entrainers 34 3.1.3. Two-component entrainers 37 3.1.4. Comparison of single-component and two-component entrainers 42 3.2. Ethanol/ water case study 46 3.2.1. Overview 46 3.2.2. Single-component entrainers 49 3.2.3. Two-component entrainers 51 3.2.4. Three-component entrainer 53 3.2.5. Comparison of single- and multi-component entrainers 56 3.3. THF/ ethanol/ water case study 59 3.3.1. Overview 59 3.3.2. Single-component entrainer 61 4. Conclusion 66 References 67 Appendix A: Nomenclature 74 Appendix B: MATLAB code 75 Appendix C: TAC calculation 78 | |
| dc.language.iso | en | |
| dc.subject | 萃取蒸餾 | zh_TW |
| dc.subject | 混合共沸劑 | zh_TW |
| dc.subject | 三組成共沸物 | zh_TW |
| dc.subject | 模擬退火演算法 | zh_TW |
| dc.subject | 最適化 | zh_TW |
| dc.subject | process optimization | en |
| dc.subject | mixed entrainer | en |
| dc.subject | ternary azeotrope | en |
| dc.subject | simulated annealing algorithm | en |
| dc.subject | extractive distillation | en |
| dc.title | 利用模擬退火演算法和Aspen Plus ActiveX自動化伺服器進行使用混合溶劑之萃取蒸餾塔最適化 | zh_TW |
| dc.title | Extractive Distillation Optimization with Mixed Entrainer Using Simulated Annealing Algorithm and Aspen Plus Automation Server | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳誠亮(Cheng-Liang Chen),錢義隆(I-Lung Chien),李豪業(Hao-Yeh Lee),郭文生(Vincentius Surya Kurnia Adi) | |
| dc.subject.keyword | 萃取蒸餾,混合共沸劑,三組成共沸物,模擬退火演算法,最適化, | zh_TW |
| dc.subject.keyword | extractive distillation,mixed entrainer,ternary azeotrope,simulated annealing algorithm,process optimization, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201901528 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
