Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73022
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李培芬(Pei-Fen Lee) | |
dc.contributor.author | Yan-Ru Yu | en |
dc.contributor.author | 盂燕汝 | zh_TW |
dc.date.accessioned | 2021-06-17T07:14:15Z | - |
dc.date.available | 2019-10-10 | |
dc.date.copyright | 2019-07-17 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-16 | |
dc.identifier.citation | 王思懿。2014。臺灣陸域保育類哺乳動物的空間分布預測、保護區涵蓋及熱點分析。碩士論文。國立臺灣大學,臺北市。
江鴻猷、曾喜育、邱清安、曾彥學。2014。樣本數量對最大熵物種分布模式(MaxEnt)準確度之影響:以臺灣水青岡為例。林業研究季刊 36:101-114。 吳欣恬,自由時報。2018。狂犬病又來了!鼬獾傷人初二初三各一例。https://news.ltn.com.tw/news/life/breakingnews/2345853。 李欣怡。2015。2013-2014年狂犬病陽性的臺灣鼬獾(Melogale moschata subaurantiaca)之空間分布與疫區擴張趨勢探討。碩士論文。國立臺灣大學,臺北市。 祁偉廉、徐偉。臺灣哺乳動物:野外探險實用大圖鑑。1998。初版。大樹文化,臺北市。 林務局。2006。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究(1之3)。行政院農業委員會,臺北市。 動植物防疫檢驗局。行政院農委會。2014。狂犬病中央流行疫情指揮中心階段性報告。https://www.baphiq.gov.tw/view_redirect.php?id=2537&type=f。 動植物防疫檢驗局。行政院農委會。2018。近期發生狂犬病鼬獾咬傷人案例,呼籲民眾應恪遵2不1要原則。https://www.baphiq.gov.tw/view_news.php?id=13736。 莊順安。1994。福山森林生態系三種食肉目動物(麝香貓、食蟹濛、鼬獾)的食性研究。碩士論文。國立臺灣大學,臺北市。 特有生物研究保育中心。2014。食肉目野生動物狂犬病之監測暨圈養鼬獾之繁殖研究(1之3)。行政院農業委員會,南投縣。 特有生物研究保育中心。2016。食肉目野生動物狂犬病之監測暨圈養鼬獾之繁殖研究(2之3)。行政院農業委員會,南投縣。 許玉玲。2009。通霄地區臺灣鼬獾(Melogale moschata subaurantiaca)之活動範圍、活動模式與棲地利用。碩士論文,國立屏東科技大學,屏東縣。 張傑鈞、謝祚元、黃達訓。2013。郡大地區小型食肉目動物之族群消長初探—以鼬獾、黃喉貂為例。臺灣林業 39:3-10。 張鈞皓。2016。臺灣東部野生鼬獾狂犬病調查及其血液學特徵探討。碩士論文。國立臺灣大學,臺北市。 劉振軒。2013。臺灣及大陸地區狂犬病歷史及防治回顧。疫情報導 29:s36-s41。 蔣杰安。2016。大安溪沿岸臺灣鼬獾(Melogale moschata subaurantiaca)之活動範圍與族群密度。碩士論文,國立屏東科技大學,屏東縣。 關媺媺、顏慕庸。2013。狂犬病防疫及滅除策略之探討。疫情報導 29:s27-s35。 Anderson, R. M., H. C. Jackson, R. M. May, and A. M. Smith. 1981. Population dynamics of fox rabies in Europe. Nature 289: 765-771. Anderson, R. P. 2012.Harnessing the world's biodiversity data: promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences 1260: 66–80. Arjo, W. M., C. E. Fisher, J. Armstrong, F. Boyd, and D. Slate. 2008. Effects of natural barriers and habitat on the western spread of raccoon rabies in Alabama. Journal of Wildlife Management 72: 1725-1735. Bacon, P. J. 1985. Population Dynamics of Rabies in Wildlife. Academic Press, London, UK. Bigler, W., R. McLean, and H. Trevino. 1973. Epizootiologic aspects of raccoon rabies in Florida. American Journal of Epidemiology 98: 326-335. Boyer, J. P., P. Canac-Marquis, D. Guerin, J. Mainguy, and F. Pelletier. 2011. Oral vaccination against raccoon rabies: landscape heterogeneity and timing of distribution influence wildlife contact rates with the ONRAB vaccine bait. Journal of Wildlife Diseases 47: 593-602. Chen, M.-T., M. E. Tewes, K. J. Pei, and L. I. Grassman. 2009. Activity patterns and habitat use of sympatric small carnivores in southern Taiwan. Mammalia 73: 20-26. Chiang, P.-J., K. J.-C. Pei, M. R. Vaughan, and C.-F. Li. 2012. Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zoological Studies 51: 500-511. Childs, J. E., A. T. Curns, M. E. Dey, L. A. Real, L. Feinstein, O. N. Bjornstad, and J. W. Krebs. 2000. Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proceedings of the National Academy of Sciences of the United States of America 97: 13666-13671. Chiou, H. Y., C. H. Hsieh, C. R. Jeng, F. T. Chan, H. Y. Wang, and V. F. Pang. 2014. Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerging Infectious Diseases 20: 790-798. Elmore, S. A., R. B. Chipman, D. Slate, K. P. Huyvaert, K. C. VerCauteren, and A. T. Gilbert. 2017. Management and modeling approaches for controlling raccoon rabies: The road to elimination. PLOS Neglected Tropical Diseases 11: e0005249. Gremillion-Smith, C., and A. Woolf. 1988. Epizootiology of skunk rabies in North America. Journal of Wildlife Diseases 24: 620-626. Guerra, M., A. Curns, C. Rupprecht, C. Hanlon, J. Krebs, and J. Childs. 2003. Skunk and raccoon rabies in the eastern United States: temporal and spatial analysis. Emerging Infectious Diseases 9: 1143-1150. Hanlon, C. A., J. E. Childs, and V. F. Nettles. 1999. Recommendations of a national working group on prevention and control of rabies in the United States. Journal of the American Veterinary Medical Association 215: 1276-1281 Hijmans, R. J. 2012. Cross‐validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93: 679-688. Hirsch, B. T., J. J. H. Reynolds, S. D. Gehrt, M. E. Craft, and S. Bauer. 2016. Which mechanisms drive seasonal rabies outbreaks in raccoons? A test using dynamic social network models. Journal of Applied Ecology 53: 804-813. Hsu, A. P., et al. 2017. Safety, efficacy and immunogenicity evaluation of the SAG2 oral rabies vaccine in Formosan ferret badgers. PLoS One 12: e0184831. Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review 106: 620-630. Jung, I., M. Kulldorff, and A. C. Klassen. 2007. A spatial scan statistic for ordinal data. Statistics in Medicine 26: 1594-1607. Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20: 141-151. Kim, B. I., J. D. Blanton, A. Gilbert, L. Castrodale, K. Hueffer, D. Slate, and C. E. Rupprecht. 2014. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980-2010. Zoonoses Public Health 61: 72-80. Kitron, U. 1998. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. Journal of Medical Entomology 35: 435-445. Kulldorff, M. 1997. A spatial scan statistic. Communications in Statistics-Theory and Methods 26: 1481-1496. Lan, Y. C., T. H. Wen, C. C. Chang, H. F. Liu, P. F. Lee, C. Y. Huang, B. B. Chomel, and Y. A. Chen. 2017. Indigenous wildlife rabies in Taiwan: Ferret Badgers, a long term terrestrial reservoir. BioMed Research International 2017. [doi: 10.1155/2017/5491640]. Lin, Y. C., P. Y. Chu, M. Y. Chang, K. L.Hsiao, J. H. Lin, and H. F. Liu.2016. Spatial temporal dynamics and molecular evolution of re-emerging rabies virus in Taiwan. International Journal of Molecular Sciences 17. [doi: 10.3390/ijms17030392]. Liu, Y., S. Zhang, X. Wu, J. Zhao, Y. Hou, F. Zhang, A. Velasco-Villa, C. E. Rupprecht, R. Hu. 2010. Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China. BMC Infectious Diseases 10. [doi: 10.1186/1471-2334-10-234]. Miller Neilan, R., and S. Lenhart. 2011. Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons. Journal of Mathematical Analysis and Applications 378: 603-619. Moore, G. E., M. P. Ward, M. Kulldorff, R. J. Caldanaro, L. F. Guptill, H. B. Lewis, and L. T. Glickman. 2005. A space-time cluster of adverse events associated with canine rabies vaccine. Vaccine 23: 5557-5562. Mørk, T., and P. Prestrud. 2004. Arctic rabies–a review. Acta Veterinaria Scandinavica 45: 1-9. Pei, K. J.-C. and Y. Wang. 1995. Some observations on the reproduction of the Taiwan ferret badger (Melogale moschata subaurantiaca) in Southern Taiwan. Zoological Studies 34: 88-95. Pei, K. J.-C. 2001. Daily activity budgets of the Taiwan ferret badger (Melogale moschata subaurantiaca) in captivity. Endangered Species Research 3: 1-11. Phillips, S. J., R. P. Anderson, M. Dudík, R. E. Schapire, and M. E. Blair. 2017. Opening the black box: an open-source release of Maxent. Ecography 40: 887-893. Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. Radosavljevic, A., R. P. Anderson, and M. Araújo. 2014. Making better maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41: 629-643. Recuenco, S., J. D. Blanton, and C. E. Rupprecht. 2012. A spatial model to forecast raccoon rabies emergence. Vector-Borne and Zoonotic Diseases 12: 126-137. Recuenco, S., M. Eidson, B. Cherry, M. Kulldorff, and G. Johnson. 2008. Factors associated with endemic raccoon (Procyon lotor) rabies in terrestrial mammals in New York State, USA. Preventive Veterinary Medicine 86: 30-42. Recuenco, S., M. Eidson, M. Kulldorff, G. Johnson, and B. Cherry. 2007. Spatial and temporal patterns of enzootic raccoon rabies adjusted for multiple covariates. International Journal of Health Geographics 6. [doi: 10.1186/1476-072X-6-14]. Reilly, S., W. T. Sanderson, W. J. Christian, and S. R. Browning. 2017. Geographical clusters and predictors of rabies in three southeastern states. Vector-Borne and Zoonotic Diseases 17: 432-438. Robertson, C., and T. A. Nelson. 2010. Review of software for space-time disease surveillance. International Journal of Health Geographics 9. [doi: 10.1186/1476-072X-9-16]. Rosatte, R. 1984. Seasonal occurrence and habitat preference of rabid skunks in southern Alberta. The Canadian Veterinary Journal 25: 142-144. Rupprecht, C. E., R. Willoughby, and D. Slate. 2006. Current and future trends in the prevention, treatment and control of rabies. Expert Review of Anti-infective Therapy 4: 1021-1038. Russell, C. A., L. A. Real, and D. L. Smith. 2006. Spatial control of rabies on heterogeneous landscapes. PLoS One 1: e27. Russell, C. A., D. L. Smith, J. E. Childs, and L. A. Real. 2005. Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio. PLoS Biology 3: e88. Singh, R., K. P. Singh, S. Cherian, M. Saminathan, S. Kapoor, G. B. Manjunatha Reddy, P. Shibani, K. Dhama. 2017. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Veterinary Quarterly 37: 212-251. Smith, D. L., B. Lucey, L. A. Waller, J. E. Childs, and L. A. Real. 2002. Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America 99: 3668-3672. Steven J. Phillips, D. Miroslav, E. S. Robert. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2019/5/24. Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. Tsai, K. J., W. C. Hsu, W. C. Chuang, J. C. Chang, Y. C. Tu, H. J. Tsai, H. F. Liu, F. I. Wang, S. H. Lee. 2016. Emergence of a sylvatic enzootic Formosan ferret badger-associated rabies in Taiwan and the geographical separation of two phylogenetic groups of rabies viruses. Veterinary Microbiology 182: 28-34. Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography 36: 2290-2299. Wallace, R. M., Y. Lai, J. B. Doty, C. C. Chen, N. M. Vora, J. D. Blanton, S. S. Chang, J. M. Cleaton, K. J. C. Pei. 2018. Initial pen and field assessment of baits to use in oral rabies vaccination of Formosan ferret-badgers in response to the re-emergence of rabies in Taiwan. PLoS One 13: e0189998. Zhang, S., Y. Liu, Y. Hou, J. Zhao, F. Zhang, Y. Wang, and R. Hu. 2013. Epidemic and maintenance of rabies in Chinese ferret badgers (Melogale moschata) indicated by epidemiology and the molecular signatures of rabies viruses. Virologica Sinica 28: 146-151. Zhang, S., Q. Tang, X. Wu, Y. Liu, F. Zhang, C. E. Rupprecht, and R. Hu. 2009. Rabies in ferret badgers, southeastern China. Emerging Infectious Diseases 15: 946-949. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73022 | - |
dc.description.abstract | 臺灣於1961年後未有狂犬病之死亡案例,曾正式宣告撲滅狂犬病。然而於2013年7月,首次發現臺灣鼬獾(Melogale moschata subaurantiaca)確診為狂犬病案例;同月23日,發生狂犬病鼬獾咬人之案件。而根據病毒之親緣關係顯示,鼬獾狂犬病受到數個地理障礙隔離,分別為大安溪、濁水溪、高屏溪以及中央山脈。由於臺灣鼬獾狂犬病的疫情之時空分布皆尚未有完整的研究,為呈現其2013-2018年間之趨勢變化,本研究由行政院農委會動植物防疫檢疫局發布之被動監測資料取得鼬獾狂犬病之死亡案例,並從新聞媒體報導追溯狂犬病鼬獾咬人案例,以地理資訊系統呈現鼬獾狂犬病死亡案例與咬傷人報導案例之時空變化趨勢。
結果發現死亡案例的總數量由2013年的最高峰(253例)逐年下降,至2016年達到最低點(43例),於2018年重新上揚至110例。在研究期間共出現三個顯著的空間聚集群(p ≦ .001),死亡案例之主要分布區域由臺東縣成功鎮逐年北移至花蓮縣光復鄉,兩鄉鎮中心點距離約為43公里,並已於2018年跨越秀姑巒溪;而中部地區的大安溪仍為重要的地理屏障。在季節動態方面,鼬獾狂犬病之死亡案例主要發生於1月,咬傷人報導案例高峰期則為2月及7月,推測兩者分別與亞成體播遷以及鼬獾繁殖季有關。此外,本研究整合環境因子資料製作鼬獾之物種分布預測模式,結果顯示鼬獾在山地以及森林環境的出現機率較高;另將模式預測之鼬獾分布網格與狂犬病分布網格進行比較,狂犬病分布網格之平均海拔高度明顯較鼬獾分布網格低(p < .001);主成分分析則顯示,狂犬病分布網格主要與人為活動之環境因子有關。相較於鼬獾之分布,狂犬病案例主要位於較低海拔與人類活動區周圍。 | zh_TW |
dc.description.abstract | Taiwan had not found any rabies death case after 1961, and it was declared to be rabies-free. However, a first case of Taiwan ferret badger (Melogale moschata subaurantiaca) diagnosed as rabid case in July 2013, and also a rabid ferret badger biting case occurred on 23rd of the same month. According to previous research, the phylogenetic relationship showed rabies virus in Taiwan ferret badger was isolated by several geographical barriers, which including Da’an River, Zhuoshui River, Gaoping River and Central Mountain Range. Until now, epidemiology cycle and spatial distribution of rabies in Taiwan ferret badger have not been fully studied. Therefore, this study is intended to present the epidemiology trend during 2013-2018. We obtained the passive monitoring data of death case in rabid Taiwan ferret badger released by Bureau of Animal and Plant Health Inspection and Quarantine Council of Agriculture, Executive Yuan, and also retrieved reported rabid Taiwan ferret badger biting cases from published news. We presented the trend of temporal-spatial feature in rabid death cases and biting cases by GIS.
Result shows the number of rabid death cases declined from the highest peak (253 cases) in 2013, reached a lowest number (43 cases) in 2016, and then re-raised to 110 cases in 2018. There were three significant spatial clusters during the study period (p ≦ .001), and the primary distribution area of rabid death cases was moving northward from the Chenggong Township in Taitung County to Guanfu Township in Hualian County. The center distance of these two townships is about 43 kilometers. The rabid areas have crossed Xiuguluan River in 2018, while Da’an River still acts as an important geographical barrier in central area of Taiwan. On the aspect of seasonal dynamics, rabid death cases mainly occurred in January; peak of rabid biting cases arose in February and July. These peak periods of rabid cases may be related to juvenile migration and breading season of ferret badger. Furthermore, this study integrated environmental factors to build a species distribution model of ferret badger. The model indicates ferret badgers prefer mountainous and forest area. Compare to distribution of ferret badger, distribution of rabid cases has lower average elevation significantly (p < .001). According to principle component analysis, distribution of rabid cases is linked to environmental factors for human activities. It is concluded that rabid cases tended to locate in lower elevation and near the human activity area. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:14:15Z (GMT). No. of bitstreams: 1 ntu-108-R05b44013-1.pdf: 7790909 bytes, checksum: 21b434fd37e63c9358f45385a97507cf (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vi 表目錄 viii 前言 1 材料與方法 4 結果 12 討論 15 結論 21 引用文獻 22 圖 30 表 53 附錄 56 | |
dc.language.iso | zh-TW | |
dc.title | 2013-2018年臺灣鼬獾(Melogale moschata subaurantiaca)狂犬病疫情的時空變遷趨勢與地景特徵探討 | zh_TW |
dc.title | Spatial-Temporal Trends and Landscape Characteristics of Rabies Epidemics in Taiwan Ferret Badger (Melogale moschata subaurantiaca), 2013-2018 | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林瑞興,張琪如 | |
dc.subject.keyword | 狂犬病,疫情,鼬獾,時空變化,地景特徵,物種分布預測, | zh_TW |
dc.subject.keyword | rabies,epidemics,Taiwan Ferret Badger,temporal-spatial trend,landscape characteristics, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU201901499 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 7.61 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.