請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73000完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | |
| dc.contributor.author | Yung-Yeh Chen | en |
| dc.contributor.author | 陳雍曄 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:13:23Z | - |
| dc.date.available | 2024-07-23 | |
| dc.date.copyright | 2019-07-23 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-17 | |
| dc.identifier.citation | 1 Tiwari, G. N. & Mishra, R. K. Advanced renewable energy sources. (Royal Society of Chemistry, 2012).
2 Hoffert, M. I. et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 298, 981-987 (2002). 3 Stöcker, M. J. A. C. I. E. Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte chemie international edition. 47, 9200-9211 (2008). 4 Kim, S., Dale, B. E. J. B. & bioenergy. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy. 26, 361-375 (2004). 5 Yang, S.-T. in Bioprocessing for Value-Added Products from Renewable Resources 1-24 (Elsevier, 2007). 6 Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic acids research 37, D233-238, doi:10.1093/nar/gkn663 (2009). 7 Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993) 3, 853-859, doi:10.1016/s0969-2126(01)00220-9 (1995). 8 Datta, P. K., Hanson, K. R. & Whitaker, D. R. Improved procedures for preparation and characterization of Myrothecium cellulase. 3. Molecular weight, amino acid composition, terminal residues, and other properties. Canadian journal of biochemistry and physiology 41, 697-705 (1963). 9 Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS microbiology reviews 29, 3-23, doi:10.1016/j.femsre.2004.06.005 (2005). 10 Bastawde, K. B. Xylan structure, microbial xylanases, and their mode of action. World journal of microbiology & biotechnology 8, 353-368, doi:10.1007/bf01198746 (1992). 11 Srivastava, P. K. & Kapoor, M. Production, properties, and applications of endo-beta-mannanases. Biotechnology advances 35, 1-19, doi:10.1016/j.biotechadv.2016.11.001 (2017). 12 Bartholomew, B. A. & Perry, A. L. The properties of synovial fluid beta-mannosidase activity. Biochimica et biophysica acta 315, 123-127 (1973). 13 Wang, S., Sun, X. & Yuan, Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresource technology 258, 302-309, doi:10.1016/j.biortech.2018.03.064 (2018). 14 Sanchez Nogue, V. & Karhumaa, K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology letters 37, 761-772, doi:10.1007/s10529-014-1756-2 (2015). 15 Taha, M. et al. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current opinion in biotechnology 38, 190-197, doi:10.1016/j.copbio.2016.02.012 (2016). 16 Yuan, S.-F. et al. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. Journal of biological chemistry. 290, 5739-5748 (2015). 17 Wu, T.-H. et al. Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica et Biophysica Acta (BBA). 1814, 1832-1840 (2011). 18 Pereira, J. H. et al. Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of Structural Biology. 172, 372-379 (2010). 19 Liang, P.-H. et al. A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochimica et Biophysica Acta (BBA). 1862, 513-521 (2018). 20 Cruys-Bagger, N. et al. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. Journal of biological chemistry. 287, 18451-18458 (2012). 21 Cruys-Bagger, N., Tatsumi, H., Ren, G. R., Borch, K. & Westh, P. J. B. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry. 52, 8938-8948 (2013). 22 Knott, B. C. et al. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. Journal of the American Chemical Society. 136, 321-329 (2013). 23 Dana, C. M. et al. Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A. Biotechnology and Bioengineering. 109, 2710-2719 (2012). 24 Komor, R. S., Romero, P. A., Xie, C. B., Arnold, F. H. J. P. e., design & selection. Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Engineering, Design and Selection. 25, 827-833 (2012). 25 Smith, M. A., Bedbrook, C. N., Wu, T. & Arnold, F. H. J. A. s. b. Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination. Synthetic biology. 2, 690-696 (2013). 26 Voutilainen, S. P., Murray, P. G., Tuohy, M. G., Koivula, A. J. P. E., Design & Selection. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Engineering, Design and Selection. 23, 69-79 (2009). 27 Zheng, F. et al. Enhancing the catalytic activity of a novel GH5 cellulase Gt Cel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnology for Biofuels. 11, 76 (2018). 28 Moraïs, S. et al. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnology for Biofuels. 9, 164 (2016). 29 Kont, R., Kari, J., Borch, K., Westh, P. & Väljamäe, P. J. J. o. B. C. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A. Journal of biological chemistry. 291, 26013-26023 (2016). 30 Kurašin, M. & Väljamäe, P. J. J. o. B. C. Processivity of cellobiohydrolases is limited by the substrate. Journal of biological chemistry. 286, 169-177 (2011). 31 Horn, S. J., Sørlie, M., Vårum, K. M., Väljamäe, P. & Eijsink, V. G. in Methods in enzymology Vol. 510 69-95 (Elsevier, 2012). 32 Von Ossowski, I. et al. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology. 333, 817-829 (2003). 33 Taylor, L. E. et al. Engineering enhanced cellobiohydrolase activity. Nature Communications. 9, 1186 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73000 | - |
| dc.description.abstract | 糖苷水解酶家族5(GH5)催化各種多醣的降解作用,在這個家族中包含了內切葡聚醣酶,甘露聚醣酶,木聚醣酶和基丁聚醣酶等催化不同醣類的酵素活性,這個特性使其成為在酵素工程中關鍵的發現來源和加工目標。然而,目前為止GH5酶仍然缺乏有力的結構 - 活性關係,這限制了我們來合理的研發活性更為優異的酵素。在本篇研究中,我們發現了一個來自Clostridium thermocellum的GH5酶,它顯示出具有催化分解纖維素,木聚醣和甘露聚醣的活性。為了闡明此酵素中何氨基酸對於何種活性的影響較為重要,我們利用了在此三功能酵素的活化位進行位點直接突變實驗來解決此問題。初步數據中顯示Glu193和Glu316為催化殘基,Tyr270對酶催化中的所有三種活性(纖維素酶/木聚醣酶/甘露聚醣酶)都是至關重要的。此外,Met277在甘露聚醣酶活性中起著至關重要的作用。另外,Asn351和Glu360在木聚醣酶的活性上扮演了關鍵的角色。而在環路置換實驗中,我們發現T2-loop上的Glu360與Tmloop上的Trp210在位置上重疊,導致結構尺度上的不協調現象,此發現也為木聚醣酶和甘露聚醣酶活性之間的此消彼長的現象提供了解釋。總體而言,這些研究結果提供了更多GH5酶在結構與活性的關係間的細節,且這些發現可能對於生物燃料工業應用中蛋白質工程的未來成功至關重要。 | zh_TW |
| dc.description.abstract | Glycoside Hydrolase Family 5 (GH5) enzymes catalyze various kinds of polysaccharide depolymerization, including endoglucanse, mannanase, xylanase and chitosanase, making them key discovery and engineering targets. However, there remains a lack of structure-activity relationships on GH5 enzymes that limit us to rationally develop better enzymes. Here we present a GH5 enzyme from Clostridium thermocellum, which shows activity against cellulose, xylan and mannan. In order to elucidate which amino acids are responsible for three substrate specificities, site-direct mutagenesis experiments were performed. The preliminary data revealed that Glu193 and Glu316 are catalytic residues and Tyr270 is critical for all three activities (cellulase/xylanase/mannanase) in enzyme catalysis. Moreover, Met277 plays a vital role in mannanase activity. In addition, Asn351 and Glu360 are crucial for xylanase activity. In loop replacement experiments, we found that Glu360 on T2-loop was overlapping with Trp210 on Tmloop, resulting in structural incoordination and providing an explanation for the antagonism between xylanase and mannanase activity. Overall, these findings provide more details in GH5 enzymes that could be essential to the future success of protein engineering in biofuel industrial applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:13:23Z (GMT). No. of bitstreams: 1 ntu-108-R06b46020-1.pdf: 3055275 bytes, checksum: 07e04bbc03ba1704d8b12cfdfd34ae82 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 1
ABSTRACT 2 ABBREVIATIONS 3 INTRODUCTION 4 1.1 The requirement for alternative energy source 4 1.2 Structure of lignocellulosic biomass 4 1.3 Glycoside hydrolases 5 1.4 Overview and difficulties in the development of biomass biofuel 7 1.5 Specific aim of this study 8 MATERIALS AND METHODS 10 2.1 Reagents 10 2.2 DNA source and bacterial strains 10 2.3 Constructions of Recombinant Proteins 10 2.4 Expression and Purification of Recombinant Proteins 11 2.5 Site-Directed Mutagenesis 12 2.6 Protein sequence alignment and structural analysis 13 2.7 CtCel5T-oligosaccharide complex structural modeling 13 2.8 Determination of Enzyme Activity 14 2.8.1 3,5-dinitrosalicylic acid (DNS) reagent preparation 14 2.8.2 Optimal pH and temperature for enzyme activity 14 2.8.3 Enzyme activity assays 15 2.8.4 Determination of enzyme kinetics 15 2.9 End-product determination 16 2.10 Loop replacement in CtCel5T and TmCel5A 17 RESULTS 18 3.1 Cloning, expression and characterization of CtCel5T 18 3.2 Analysis of hydrolytic end products 19 3.3 Structures of CtCel5T-substrate complexes by molecular modeling 20 3.4 Site-directed mutagenesis of active-site residues in CtCel5T 22 3.5 Sequence and structure comparison with CtCel5E and TmCel5A 24 3.6 T2-loop and Tm-loop are uncoordinated from a structural perspective 25 DISCUSSION 28 TABLES 32 FIGURES 40 REFERENCE 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構-活性關係 | zh_TW |
| dc.subject | 蛋白質工程 | zh_TW |
| dc.subject | 生物燃料 | zh_TW |
| dc.subject | 三功能酵素 | zh_TW |
| dc.subject | 糖?水解? | zh_TW |
| dc.subject | Trifunctional | en |
| dc.subject | Protein engineering | en |
| dc.subject | structure-activity relationship | en |
| dc.subject | Glycoside hydrolase | en |
| dc.subject | Biofuel | en |
| dc.title | 熱纖梭菌之三功能纖維水解酵素的生化特性與工程改造 | zh_TW |
| dc.title | Biochemical Characterization and Engineering of a Trifunctional Cellulase/Xylanase/Mannanase from Clostridium thermocellum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳世雄,何孟樵 | |
| dc.subject.keyword | 糖?水解?,三功能酵素,生物燃料,蛋白質工程,結構-活性關係, | zh_TW |
| dc.subject.keyword | Glycoside hydrolase,Trifunctional,Biofuel,Protein engineering,structure-activity relationship, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201901587 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
