請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/729完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣本基 教授 | |
| dc.contributor.author | Bo-Kai Shu | en |
| dc.contributor.author | 舒柏凱 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:00:12Z | - |
| dc.date.available | 2019-08-06 | |
| dc.date.available | 2021-05-11T05:00:12Z | - |
| dc.date.copyright | 2019-08-06 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-29 | |
| dc.identifier.citation | 1. Barnes, P. and J. Bensted (2002). Structure and Performance of Cements, Second Edition , Taylor & Francis.
2. Belhadj, E.; Diliberto, C.; Lecomte, A. (2012). Characterization and activation of Basic Oxygen Furnace slag. Cement and Concrete Composites, 34(1), 34-40. 3. Belhadj, E.; Diliberto, C.; Lecomte, A. (2014). Properties of hydraulic paste of basic oxygen furnace slag. Cement and Concrete Composites, 45, 15-21. 4. Bentz, D. P.; Ardani, A.; Barrett, T.; Jones, S. Z.; Lootens, D.; Peltz, M. A.; Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10. 5. Bentz, D. P.; Sato, T.; De la Varga, I.; Weiss, W. J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures. Cement and Concrete Composites, 34(1), 11-17. 6. Bobicki, E. R.; Liu, Q.; Xu, Z.; and Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320. 7. Brand, A. S.; Roesler, J. R. (2015). Steel furnace slag aggregate expansion and hardened concrete properties. Cement and Concrete Composites, 60, 1-9. 8. Chang, E. E.; Chen, C. H.; Chen, Y. H.; Pan, S. Y.; Chiang, P. C. (2011). Performance evaluation for carbonation of steel making slags in a slurry reactor. Journal of Hazardous Materials , 186, 558-564. 9. Cheng-HsiuYu; Ming-Tsz Chen; Hao Chen; Chung-SungTan (2016). Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture. Applied Energy, 175, 269-276. 10. Chen, Z.; Xie, J.; Xiao, Y.; Chen, J.; Wu, S. (2014). Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Construction and Building Materials, 64, 60-66. 11. Chindaprasirt, P.; Kanchanda, P.; Sathonsaowaphak, A.; Cao, H. (2007). Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 21(6), 1356-1361. 12. De Weerdt, K.; Haha, M. B.; Le Saout, G.; Kjellsen, K. O.; Justnes, H.; Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291. 13. Dri, M.; A. Sanna; M. M. Maroto Valer (2014). Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Applied Energy, 113, 515-523. 14. Eloneva, S.; Said, A.; Fogelholm, C. J.; Zevenhoven, R. (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Applied Energy, 90, 329-334. 15. Fernandez Bertos, M.; S. J. Simons; C. D. Hills; P. J. Carey (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater, 112(3), 193-205. 16. Gambhir, M. L. (2013). Concrete Technology: Theory and Practice: Tata McGraw-Hill Education. 17. Goto, S.; Suenaga, K.; Kado, T.; Fukuhara, M. (1995). Calcium silicate carbonation products. Journal of the American Ceramic Society, 78(11), 2867-2872. 18. Huijgen, W. J. J.; Comans , J. W. R. N. J. (2005) Mineral CO 2 sequestration by steel slag carbonation. 19. Jo, H.; S. H. Park; Y. N. Jang, S. C. Chae; P. K. Lee; H. Y. Jo (2014). Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chemical Engineering Journal, 254, 313-323. 20. Juenger, M. C.; Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research. 21. Keum-Il Song; Jin-Kyu Song; Bang Yeon Lee; Keun-Hyeok Yang (2014). Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar, Advances in Materials Science and Engineering. 22. Kourounis, S.; Tsivilis, S.; Tsakiridis, P.; Papadimitriou, G.; Tsibouki, Z. (2007). Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 37(6), 815-822. 23. Laura Dembovska; Diana Bajare; Ina Pundiene; Laura Vitola (2017). Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete. Procedia Engineering, 172, 202-210. 24. Lawrence, C. (1990). Sulphate attack on concrete. Magazine of Concrete Research, 42(153), 249-264. 25. Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860. 26. Lothenbach, B.; Scrivener, K.; Hooton, R. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244-1256. 27. Massazza, F.; Daimon, M. (1992). Chemistry of hydration of cements and cementitious systems. Paper presented at the Proceedings of 9th International Congress on the Chemistry of Cement. 28. Matschei, T.; Lothenbach, B.; Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551-558. 29. Mechling, J.-M.; Lecomte, A.; Diliberto, C. (2009). Relation between cement composition and compressive strength of pure pastes. Cement and Concrete Composites, 31(4), 255-262. 30. Mehta, P. K.; Monteiro, P. J. (2006). Concrete: icrostructure, properties, and materials (Vol. 3): McGraw-Hill New York. 31. Mindess, S.; Young, J. F.; Darwin, D. (2003). Concrete. 32. Monshi, A.; Asgarani, M. K. (1999). Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 29(9), 1373-1377. 33. Muftah H. El-Naas; Maisa El Gamal; Suhaib Hameedi; Abdel-Mohsen O. Mohamed (2015). CO2 sequestration using accelerated gas-solid carbonation of pretreated EAF steel-making bag house dust. Journal of Environmental Management, 156, 218-224. 34. Murphy, J.; Meadowcroft, T.; Barr, P. (1997). Enhancement of the cementitious properties of steelmaking slag. Canadian Metallurgical Quarterly, 36(5), 315-331. 35. Nawaz Ahmad; Anders Wörman; Xavier Sanchez-Vila; Jerker Jarsjö; Andrea Bottacin-Busolin, Helge Hellevang (2016). Injection of CO2-saturated brine in geological reservoir: A way to enhanced storage safety. International Journal of Greenhouse Gas Control, 54, 129-144. 36. N.L. Ukwattage; P.G. Ranjith; X. Li (2017). Measurement, 97, 15-22. 37. Pan, S. Y. (2012). CO2 Capture by Accelerated Carbonation of Alkali ne Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research. 38. Pan, S. Y.; R. Adhikari; H. Chen; P. Li; P. C. Chiang (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. Journal of Cleaner Production, 137, 617- 631. 39. Pan, S. Y., A. M. Lorente Lafuente and P. C. Chiang (2016). Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization. Applied Energy, 170, 269-277. 40. Park, A. H. A. and L. S. Fan (2004). Mineral sequestration: Physically activated dissolution of serpentine and pH swing process. Chemical Engineering Science, 59 (22-23), 5241-5247. 41. Péra, J.; Husson, S.; Guilhot, B. (1999). Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21(2), 99-105. 42. Rosa M. Cue´llar-Franca; Adisa Azapagic (2015). Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82–102. 43. Rostami, V.; Shao, Y.; Boyd, A. J.; He, Z. (2012). Microstructure of cement paste subject to early carbonation curing. Cement and Concrete Research, 42(1), 186-193. 44. Shaik Hussain; Dipendu Bhunia; S.B. Singh (2017). Comparative study of accelerated carbonation of plain cement and fly-ash concrete. Journal of Building Engineering, 10. 26-31. 45. Shi, C., Qian, J. (2000). High performance cementing materials from industrial slags—a review. Resources, Conservation and Recycling, 29(3), 195-207. 46. Shu-Yuan Pan; Yi-Hung Chen; Chun-Da Chen; Ai-Lin Shen; Michael Lin; Pen-Chi Chiang (2015). High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry. Environmental Science & Technology, 49, 12380−12387 47. Si-Lu Pei; Shu-Yuan Pan; Xiang Gao; Yun-Ke Fang; Pen-Chi Chiang (2018) Efficacy of carbonated petroleum coke fly ash as supplementary cementitious materials in cement mortars. Journal of Cleaner Production, 180, 689-697. 48. Taylor, H. F. (1997). Cement chemistry: Thomas Telford. 49. Thomas, M. (2013). Supplementary cementing materials in concrete: CRC Press. 50. Tongsheng Zhang; Qijun Yu; Jiangxiong Wei; Pingping Zhang; Peixin Chen (2011). A gap-graded particle size distribution for blended cements: Analytical approach and experimental validation. Powder Technology, 214, 259-268. 51. Tongsheng Zhang; Peng Gao; Ruifeng Luo; Jiangxiong Wei; Qijun Yu (2014). Construction and Building Materials, 54, 339-347. 52. Tongsheng Zhang; Xiangyang Liu; Jiangxiong Wei; Qijun Yu (2014). Cement & Concrete Composites, 52, 18-26. 53. Xiao-Hua Zheng; Guang-Wen Chu; De-Jia Kong; Yong Luo; Jing-Peng Zhang; Hai-Kui Zou; Li-Li Zhang; Jian-Feng Chen (2016). Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. Chemical Engineering Journal, 285, 236-242. 54. Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. (2014). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production. 55. Yuting Tan; Worrada Nookuea; Hailong Li; Eva Thorin; Jinyue Yan (2016). Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Conversion and Management, 118, 204–222. 56. Zhongya Zhang; Xiaoguang Jin; Wei Luo (2019). Long-term behaviors of concrete under low-concentration sulfate attack subjected to natural variation of environmental climate conditions. Cement and Concrete Research, 116, 217-230. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/729 | - |
| dc.description.abstract | 雖然鋼鐵業作為國家經濟發展之重要產業,但其生產過程中不僅產生有害廢棄物還會排放大量之二氧化碳。本研究旨在利用超重力碳酸化技術將不同煉鋼廢棄物進行碳酸化,同時吸收二氧化碳並探討各材料對碳捕捉的能力,而後再將碳酸化後煉鋼廢棄物作為礦粉摻料添加於水泥材料中,探究其對水泥材料的工作性、強度及耐久性的影響。在本研究中預先將磨細的轉爐石、精煉鋼渣、電弧爐碴與
水混合形成泥漿,泵送進超重力旋轉床(RPB)中與二氧化碳反應60 分鐘,透過改變轉速(700-1300rpm)、液固比(10-50 mL / g)和粒徑(32-160μm)求出不同反應條件下之碳酸化轉換率,並找出碳酸化程序的最佳工況點。據本研究顯示,1100rpm、20 mL / g、32μm 之電弧爐還原碴具有高達19.29±0.05 克-二氧化碳/100 克-爐碴的捕碳容量。同時也透過TGA、SEM、XRD 分析可看出碳酸化過程成功將原料中游離氧化鈣、氫氧化鈣及矽氧化鈣轉換為碳酸鈣附著於反應後材料表面。反應後將材料以5-15%添加於水泥漿體和砂漿中,發現水泥雖然流動性稍微下降,但黏性提高可以防止拌和混凝土發生析離,而凝結部分透過碳酸化可打斷電弧爐氧化碴的緩凝機理並使其順利凝結。碳酸鈣過程消除了游離氧化鈣和鹼金屬離子可以防止水泥晚期吸水後發生膨脹,提高水泥的晚期強度和耐久性。另外碳酸化過程形成的碳酸鈣可以和水泥中的鋁酸三鈣進行反應,形成產物填補孔隙,提高水泥早期強度和抗硫性。最後透過強度動力學模式分析添加材料對水泥強度發展的影響。故本研究之碳酸化過程不僅能做到處理二氧化碳,煉鋼廢棄物,同時將其資源化後還能提高水泥性能,極具發展前景。 | zh_TW |
| dc.description.abstract | Steelmaking industry plays an important role in economical development. However, steelmaking slags and carbon dioxide are generated simultaneously during production which are harmful for the environment. This research focused on carbonation of four kinds of steelmaking slags via High-Gravity Carbonation Process and also investigated the workability, strength and durability of cement with partial replacement of slags. In this study, slags after pretreatment were added in tap water and blended into slurry. Next, the slurry would be pumped into the rotating packed bed reactor, react with carbon dioxide for 60 minutes with different operating parameters. The results indicate that the EAFRS under 1100 rpm, 20 mL/g and 32 μm had the best carbonation conversion yield, which could fixed 19.29±0.05 g-CO2/100 g-slag. The
difference of slags between carbonation can be analyzed by thermo-gravavimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). During the carbonation process, free lime, calcium hydroxide and calcium silicates would be leached out, react with CO2 and yield calcium carbonate attached on the slags’surface. After that, carbonated slags were used as supplementary materials, blended in cement with 5 to 15% replacement. With slags added, although the fluidity of cement declined, the viscosity of the mortar got increased, which might prevent the cement segregated from aggregates. The carbonation process could wash out the organic compounds in the EAFOS, break off the retarding mechanism and make the cement specimens set normally. Besides, the carbonation process could also eliminate free lime, calcium hydroxide and alkali ions, which prevented the specimens expanding from hydration process and alkali-aggregate reaction. Furthermore, calcium carbonated generated form the carbonation process could react with tricalcium aluminate in clinker, which produced C-A-C̅ -H gel and filled up the porosity between hydration products. Thus, the compressive strength at early age, later age and the durability of mortars could be improved. Consequently, this study can not only deal with carbon dioxide and alkaline wastes from steelmaking, but also produced products which can promote the properties of cement. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:00:12Z (GMT). No. of bitstreams: 1 ntu-108-R05541106-1.pdf: 9751769 bytes, checksum: 9f2feaea61f222db9504f05f104af149 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 ……………………………………………………………..……… I
Abstract …………………………………….........………………….…..… III Table of Contents ….……………………………........……………..... V Table of Figures ………………………………………....…………....… VIII List of Tables ………………………………………………....…………... XI Comments for Oral Defense …………………………...…………. XIII Chapter 1 Introduction ...……………………………….…………... 1 Chapter 2 Literature Review ...…………...………….………….… 3 2-1 Carbonation Process …………………………….…………...… 3 2-1-1 Accelerated Carbonation …………………………......….. 3 2-1-2 Alkaline Wastes Utilization for Accelerated Carbonation ………..….............................................................................................. 9 2-1-3 Mechanism of Carbonation Process ………….......... 12 2-1-4 Rotating Packed Bed (RPB) ………………….…………... 15 2-2 Alkaline Waste from Steelmaking ………………….……. 18 2-2-1 Blast Furnace ……………...……………………………………. 19 2-2-2 Basic Oxygen Furnace ………………………….…………... 21 2-2-3 Electric Arc Furnace …………………………………...…….. 22 2-3 Cement Chemistry ………………………………………….…… 24 2-3-1 Composition of Portland Cement Clinker ….…..… 25 2-3-2 Properties of Fresh Concrete ……………………………. 28 2-3-3 Properties of Harden Concrete ……....………………... 33 Chapter 3 Materials and Methods ……………………………... 37 3-1 Research Flow Chart …………………………….………………. 37 3-2 Materials ……………………………………………………….….….. 39 3-2-1 Source of Feedstock ……………………………….....……... 39 3-2-2 Rotating Packed Bed (RPB) ………………..………….….. 40 3-2-3 Pretreatment of Steelmaking Slags…………………… 41 3-3 Equipment …………………………………………………...........… 42 3-3-1 Thermal Gravimetric Analysis (TGA) ……..….………...42 3-3-2 Scanning Electron Microscope (SEM) ……………..... 43 3-3-3 X-Ray Fluorescence (XRF) ………………….....…………... 45 3-3-4 X-ray Diffractometer (XRD) ……………..............………. 46 3-4 Methods …………………………………………..................……… 47 3-4-1 Carbonation Conversion Process ………...……..……. 47 3-4-2 Properties of Cement Replacement..……...…………. 52 3-4-3 Strength Prediction Models …………………….......…… 62 Chapter 4 Results and Discussions ………………..……….…... 67 4-1 Carbonation of Steelmaking Slags through the RPB .............................................................................................................. 67 4-1-1 Effect of Carbonation on Characteristics of Feedstock ……..…….........................................................................................….. 67 4-1-2 Effects of Operating Parameters for Carbonation ….................................................................................…...…………….. 73 4-2 Cement Replacement by Steelmaking Slags ….….… 80 4-2-1 Effect of Substitution on Workability of Cement ..80 4-2-2 Effect of Substitution on Strength of Cement …... 86 4-2-3 Effect of Substitution on Durability of Cement …. 93 4-3 Strength Prediction Model of Clinker ……......…..…….. 96 Chapter 5 Conclusion and Recommendation …..…...……. 105 5-1 Conclusions …..…………………………............................…...… 105 5-2 Recommendations …………….................................…...…… 106 References ……………………….………………………..………………… 107 Appendix ……………………………….……………………….…..……….. 115 | |
| dc.language.iso | en | |
| dc.subject | 煉鋼爐碴 | zh_TW |
| dc.subject | 碳捕捉再利用 | zh_TW |
| dc.subject | 混合水泥 | zh_TW |
| dc.subject | 超重力技術 | zh_TW |
| dc.subject | 鹼骨材反應 | zh_TW |
| dc.subject | Steelmaking slags | en |
| dc.subject | Blended cement | en |
| dc.subject | High- Gravity Carbonation Process | en |
| dc.subject | Alkali-aggregate reaction | en |
| dc.subject | Carbon capture and utilization | en |
| dc.title | 以超重力技術碳酸化後煉鋼廢棄物作為水泥添加材料之表現評估 | zh_TW |
| dc.title | Performance Evaluation of Carbonated Steelmaking Slags for Supplementary Cementitious Materials via High-Gravity Carbonation Process | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧洋 教授,陳奕宏 教授,林逸彬 教授,潘述元 教授 | |
| dc.subject.keyword | 煉鋼爐碴,碳捕捉再利用,混合水泥,超重力技術,鹼骨材反應, | zh_TW |
| dc.subject.keyword | Steelmaking slags,Carbon capture and utilization,Blended cement,High- Gravity Carbonation Process,Alkali-aggregate reaction, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU201902030 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 9.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
