Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72999
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林頌然(Sung-Jan Lin)
dc.contributor.authorRai-Teng Yeen
dc.contributor.author葉睿騰zh_TW
dc.date.accessioned2021-06-17T07:13:21Z-
dc.date.available2023-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citationBourne, W. M., D. O. Hodge and J. W. McLaren (1999). 'Estimation of corneal endothelial pump function in long-term contact lens wearers.' Invest Ophthalmol Vis Sci 40(3): 603-611.
Chen, J., Z. Li, L. Zhang, S. Ou, Y. Wang, X. He, D. Zou, C. Jia, Q. Hu, S. Yang, X. Li, J. Li, J. Wang, H. Sun, Y. Chen, Y. T. Zhu, S. C. G. Tseng, Z. Liu and W. Li (2017). 'Descemet's Membrane Supports Corneal Endothelial Cell Regeneration in Rabbits.' Sci Rep 7(1): 6983.
Egan, C. A., I. Savre-Train, J. W. Shay, S. E. Wilson and W. M. Bourne (1998). 'Analysis of telomere lengths in human corneal endothelial cells from donors of different ages.' Invest Ophthalmol Vis Sci 39(3): 648-653.
Engelmann, K., J. Bednarz and M. Bohnke (1999). '[Endothelial cell transplantation and growth behavior of the human corneal endothelium].' Ophthalmologe 96(9): 555-562.
Espana, E. M., M. Sun and D. E. Birk (2015). 'Existence of Corneal Endothelial Slow-Cycling Cells.' Invest Ophthalmol Vis Sci 56(6): 3827-3837.
Gordon, S. R. (1994). 'Cytological and immunocytochemical approaches to the study of corneal endothelial wound repair.' Prog Histochem Cytochem 28(2): 1-64.
He, Z., F. Forest, P. Gain, D. Rageade, A. Bernard, S. Acquart, M. Peoc'h, D. M. Defoe and G. Thuret (2016). '3D map of the human corneal endothelial cell.' Sci Rep 6: 29047.
Honda, H., Y. Ogita, S. Higuchi and K. Kani (1982). 'Cell movements in a living mammalian tissue: long-term observation of individual cells in wounded corneal endothelia of cats.' J Morphol 174(1): 25-39.
Hsueh, Y. J., H. C. Chen, S. E. Wu, T. K. Wang, J. K. Chen and D. H. Ma (2015). 'Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways.' Mol Ther Methods Clin Dev 2: 15014.
Ichijima, H., W. M. Petroll, P. A. Barry, P. M. Andrews, M. Dai, H. D. Cavanagh and J. V. Jester (1993). 'Actin filament organization during endothelial wound healing in the rabbit cornea: comparison between transcorneal freeze and mechanical scrape injuries.' Invest Ophthalmol Vis Sci 34(9): 2803-2812.
Joyce, N. C. (2003). 'Proliferative capacity of the corneal endothelium.' Prog Retin Eye Res 22(3): 359-389.
Joyce, N. C., B. Meklir, S. J. Joyce and J. D. Zieske (1996). 'Cell cycle protein expression and proliferative status in human corneal cells.' Invest Ophthalmol Vis Sci 37(4): 645-655.
Joyce, N. C., B. Meklir and A. H. Neufeld (1990). 'In vitro pharmacologic separation of corneal endothelial migration and spreading responses.' Invest Ophthalmol Vis Sci 31(9): 1816-1826.
Joyce, N. C., S. E. Navon, S. Roy and J. D. Zieske (1996). 'Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ.' Invest Ophthalmol Vis Sci 37(8): 1566-1575.
Lee, J. G. and E. P. Kay (2006). 'FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway.' Invest Ophthalmol Vis Sci 47(4): 1376-1386.
Li, Q., M. F. Ashraf, N. A. Bekoe, W. J. Stark, C. C. Chan and T. P. O'Brien (2000). 'The role of apoptosis in the early corneal wound healing after excimer laser keratectomy in the rat.' Graefes Arch Clin Exp Ophthalmol 238(10): 853-860.
Ljubimov, A. V. and M. Saghizadeh (2015). 'Progress in corneal wound healing.' Progress in Retinal and Eye Research 49: 17-45.
Matsuda, M., M. Sawa, H. F. Edelhauser, S. P. Bartels, A. H. Neufeld and K. R. Kenyon (1985). 'Cellular migration and morphology in corneal endothelial wound repair.' Invest Ophthalmol Vis Sci 26(4): 443-449.
Mimura, T., S. Yamagami and S. Amano (2013). 'Corneal endothelial regeneration and tissue engineering.' Prog Retin Eye Res 35: 1-17.
Navaratnam, J., T. P. Utheim, V. K. Rajasekhar and A. Shahdadfar (2015). 'Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium.' J Funct Biomater 6(3): 917-945.
Okumura, N., N. Koizumi, E. P. Kay, M. Ueno, Y. Sakamoto, S. Nakamura, J. Hamuro and S. Kinoshita (2013). 'The ROCK inhibitor eye drop accelerates corneal endothelium wound healing.' Invest Ophthalmol Vis Sci 54(4): 2493-2502.
Okumura, N., N. Koizumi, M. Ueno, Y. Sakamoto, H. Takahashi, K. Hirata, R. Torii, J. Hamuro and S. Kinoshita (2011). 'Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops.' Br J Ophthalmol 95(7): 1006-1009.
Okumura, N., Y. Okazaki, R. Inoue, K. Kakutani, S. Nakano, S. Kinoshita and N. Koizumi (2016). 'Effect of the Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) on Corneal Endothelial Wound Healing.' Invest Ophthalmol Vis Sci 57(3): 1284-1292.
Senoo, T. and N. C. Joyce (2000). 'Cell cycle kinetics in corneal endothelium from old and young donors.' Invest Ophthalmol Vis Sci 41(3): 660-667.
Van den Bogerd, B., S. N. Dhubhghaill, C. Koppen, M. J. Tassignon and N. Zakaria (2018). 'A review of the evidence for in vivo corneal endothelial regeneration.' Surv Ophthalmol 63(2): 149-165.
Van Horn, D. L., D. D. Sendele, S. Seideman and P. J. Buco (1977). 'Regenerative capacity of the corneal endothelium in rabbit and cat.' Invest Ophthalmol Vis Sci 16(7): 597-613.
Wu, Y. F., C. Y. Wang, T. L. Yang, P. N. Tsao, S. J. Lin and H. Y. Tan (2019). 'Intravital multiphoton microscopic imaging platform for ocular surface imaging.' Exp Eye Res 182: 194-201.
Yoshida, K., S. Kase, K. Nakayama, H. Nagahama, T. Harada, H. Ikeda, C. Harada, J. Imaki, K. Ohgami, K. Shiratori, I. B. Ilieva, S. Ohno, S. Nishi and K. I. Nakayama (2004). 'Involvement of p27KIP1 in the proliferation of the developing corneal endothelium.' Invest Ophthalmol Vis Sci 45(7): 2163-2167.
Yoshihara, M., H. Ohmiya, S. Hara, S. Kawasaki, F. consortium, Y. Hayashizaki, M. Itoh, H. Kawaji, M. Tsujikawa and K. Nishida (2015). 'Discovery of molecular markers to discriminate corneal endothelial cells in the human body.' PLoS One 10(3): e0117581.
Zhang, H., L. Wang, S. Liu, Y. Xie, X. Deng, S. He, J. Zhang, S. Sun, X. Li and Z. Li (2013). 'Two-photon imaging of the cornea visualized in the living mouse using vital dyes.' Invest Ophthalmol Vis Sci 54(10): 6526-6536.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72999-
dc.description.abstract角膜內皮是源自神經嵴的單層六邊形細胞,負責維持角膜的水分恆定。由於增殖能力有限,受損的成熟內皮細胞最終會導致角膜功能失常和視力喪失。然而,在生理平衡和受傷後修補期間角膜內皮的細胞動態仍不清楚。在這項研究中我們證實了N-鈣粘蛋白是角膜內皮細胞的特異性標誌物。我們透過多光子顯微鏡,發現細胞密度和細胞核體積明顯地從角膜中心向外圍減小。此外,連續3天追蹤,我們發現角膜內皮細胞都靜止於細胞週期G1並且沒有遷移。我們利用精密控制的雷射在活體小鼠的角膜內皮中製造50x50μm2的傷口。我們發現了傷口癒合過程可分為三個階段:潛伏期,遷移期和重塑期。潛伏期在6小時後結束,然後進入遷移階段。傷口在接近38小時左右關閉。有趣的是,我們也發現,在潛伏期和重塑期角膜有部分內皮細胞均會脫離彈力層(Descemet’s membrane)而進一步喪失。我們的研究不僅建立了一種新的角膜內皮損傷模型,而且還闡明了體內傷口癒合過程。此外,癒合過程中角膜內皮細胞脫離後彈力層造成進一步的細胞損失,使我們能夠在眼科治療上給予一個新見解。zh_TW
dc.description.abstractThe corneal endothelium is a monolayer of hexagonal cells derived from the neural crest and is responsible for maintaining the dehydration of the cornea. Due to the limited proliferative capacity, impaired mature endothelial cells ultimately results in corneal decompensation and loss of vision. However, the cell dynamics of corneal endothelium during homeostasis and regeneration remain unclear. In this study, we characterize that the N-cadherin is the specific marker of corneal endothelial cells. Using multi-photon live imaging, the cell density and nucleus volume in corneal endothelium significantly decreases from the center to periphery. In addition, the corneal endothelial cells are quiescent, arrested at G1 phase, without migration for consecutive 3 days. We use laser ablation with precise spatiotemporal control to create a 50x50μm2 wound in corneal endothelium in vivo. Here we show that the wound healing process can be divided into three phases: latent phase, migration phase, and remodeling phase. The latent phase initiates at 6 hours and followed by the migration phase from 24 hours. The wound approaches closed at 38 hours. Interestingly, our data suggest that corneal endothelial cells detach from the Descemet’s membrane in both the latent phase and remodeling phase. This study not only develops a novel corneal endothelial injury model but also elucidates the wound healing process in vivo. Additionally, the cell loss from Descemet’s membrane during regeneration enables us to validate the new insight into ophthalmic therapy.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:13:21Z (GMT). No. of bitstreams: 1
ntu-108-R06548071-1.pdf: 3198406 bytes, checksum: 18c34572fa9f139b9f21b729d760baf5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 ...........i
Abstract ...........ii
List of figures ...........vi
List of Tables ...........vii
Introduction ...........1
Cornea endothelium: structure and function ...........1
Wounding model in corneal endothelium ...........2
Specific cell marker for mature corneal endothelial cells ...........3
Mature corneal endothelial cells are arrested at G1-phase ...........4
Wound healing process ...........6
Materials and Methods ...........8
Multiphoton setup ...........8
Animal ...........8
In vivo imaging ...........9
Laser ablation ...........10
RNA Extraction, cDNA Synthesis and qPCR ...........10
Imaging analysis ...........12
Immunofluorescence staining ...........13
Results ...........15
Morphology of corneal endothelial cells from central to peripheral ...........15
The cell morphology and cell cycle of corneal endothelial cells in homeostasis ...........18
Cell migration as the strategy for injury in corneal endothelium ...........22
Corneal endothelial cells detach from the Descent’s membrane during the latent phase and the remodeling phase ...........29
Discussion ...........33
References ...........36
dc.language.isoen
dc.subject角膜內皮zh_TW
dc.subject雷射消融zh_TW
dc.subject傷口癒合zh_TW
dc.subjectN-鈣粘蛋白zh_TW
dc.subject細胞損失zh_TW
dc.subject細胞遷移zh_TW
dc.subjectCell migrationen
dc.subjectN-cadherinen
dc.subjectLaser ablationen
dc.subjectWound healingen
dc.subjectCorneal endotheliumen
dc.subjectCell lossen
dc.title通過多光子顯微鏡觀察角膜內皮癒合的動態zh_TW
dc.titleVisualizing the spatiotemporal dynamics of corneal endothelial healing by multi-photon microscopeen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚欣媛(Hsin-Yuan Tan),施博仁(Po-Jen Shih)
dc.subject.keyword角膜內皮,雷射消融,傷口癒合,N-鈣粘蛋白,細胞損失,細胞遷移,zh_TW
dc.subject.keywordCorneal endothelium,N-cadherin,Laser ablation,Wound healing,Cell loss,Cell migration,en
dc.relation.page40
dc.identifier.doi10.6342/NTU201901388
dc.rights.note有償授權
dc.date.accepted2019-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
3.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved